信息网络安全 ›› 2023, Vol. 23 ›› Issue (8): 32-40.doi: 10.3969/j.issn.1671-1122.2023.08.003
收稿日期:
2023-05-25
出版日期:
2023-08-10
发布日期:
2023-08-08
通讯作者:
李志慧
E-mail:lizhihui@snnu.edu.cn
作者简介:
李志慧(1966—),女,陕西,教授,博士,主要研究方向为有限域和密码学|罗双双(1997—),女,黑龙江,硕士研究生,主要研究方向为密码学|韦性佳(1991—),男,甘肃,博士研究生,主要研究方向为密码学
基金资助:
LI Zhihui(), LUO Shuangshuang, WEI Xingjia
Received:
2023-05-25
Online:
2023-08-10
Published:
2023-08-08
Contact:
LI Zhihui
E-mail:lizhihui@snnu.edu.cn
摘要:
文章利用GHZ纠缠态的量子关联性设计了一个基于受限存取结构上的多方量子秘密共享方案。在方案中,首先,参与者被分成两个互不相交的子集,
中图分类号:
李志慧, 罗双双, 韦性佳. 基于一类受限存取结构上的量子秘密共享方案[J]. 信息网络安全, 2023, 23(8): 32-40.
LI Zhihui, LUO Shuangshuang, WEI Xingjia. Quantum Secret Sharing Schemes Based on a Class of Restricted Access Structures[J]. Netinfo Security, 2023, 23(8): 32-40.
表1
本文方案与已有方案在性能上的对比
文献[ 方案 | 文献[ 方案 | 文献[ 方案 | 文献[ 方案 | 文献[ 方案 | 本文 方案 | |
---|---|---|---|---|---|---|
可实现门限 | 限制(2, | (2, | (6,7) | 广义限制(2, | 限制(2, | 限制( |
所用信息量子态类型 | GHZ态 | 纠缠态 | GHZ态 | GHZ态 | ||
所用信息量子态个数 | 2 | 2 | 5 | 2 | 2 | 1 |
参与者分组 | 2组 | — | — | 2组 | 2组 | 2组 |
所用检测量子态类型 | 2维 GHZ态 | 单光子 | 单光子 | 单光子 | 单光子 | |
所用检测量子态个数 | ||||||
酉操作次数 | 0 | 0 | 0 | 0 | 0 | |
测量 次数 | 1 | |||||
信息 效率 |
[1] | BENNETT C, BRASSARD G. WITHDRAWN: Quantum Cryptography:Public Key Distribution and Coin Tossing[C]//IEEE. Proceedings of IEEE International Conference on Computers,Systems, and Signal Processing. New York: IEEE, 1984, 175-179. |
[2] | LO H K, CURTY M, QI M. Measurement-Device-Independent Quantum Key Distribution[EB/OL]. (2012-05-28)[2023-05-10]. https://doi.org/10.48550/arXiv.1109.1473. |
[3] | TANG Yanlin, YIN Hualei, MA Xiongfeng, et al. Source Attack of Decoy-State Quantum Key Distribution Using Phase Information[EB/OL]. (2013-04-09)[2023-05-10]. https://doi.org/10.1103/PhysRevA.88.022308. |
[4] | LO H K, MA Xiongfeng, CHEN Kai. Decoy State Quantum Key Distribution[EB/OL]. (2005-06-16)[2023-05-10]. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.230504. |
[5] | NAM S W, NORDHOLT J E, RICE P R, et al. Long Distance Decoy State Quantum Key Distribution in Optical Fiber[J]. Physical Review Letters, 2007, 98(1): 1-4. |
[6] | WANG Xiangbin, YU Zongwen, HU Xiaolong. Twin-Field Quantum Key Distribution with Large Misalignment Error[EB/OL]. (2018-12-18)[2023-05-10]. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062323. |
[7] | MA Xiongfeng, ZENG Pei, ZHOU Hongyi. Phase-Matching Quantum Key Distribution[EB/OL]. (2018-05-15)[2023-05-10]. https://doi.org/10.1103/PhysRevX.8.031043. |
[8] |
PHOENIX S J, BARNEET S M, TOWNSEND P D, et al. Multi-User Quantum Cryptography on Optical Networks[J]. Journal of Modern Optics, 1995, 42(6), 1155-1163.
doi: 10.1080/09500349514551001 URL |
[9] |
ALLATI A E, BAZ M E, HASSOUNI Y. Quantum Key Distribution via Tripartite Coherent States[J]. Quantum Information Processing, 2010, 10: 589-602.
doi: 10.1007/s11128-010-0213-y URL |
[10] | HWANG W Y, YUEN H P. Quantum Key Distribution with High Loss: Toward Global Secure Communication[EB/OL]. (2003-05-19)[2023-05-10]. https://doi.org/10.48550/arXiv.quant-ph/0211153. |
[11] | HILLERY M, BUZEK V, BERTHIAUME A. Quantum Secret Sharing[EB/OL]. (1999-03-01)[2023-05-10]. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.59.1829. |
[12] | PIVOLUSKA M, HUBER M, MALIK M. Layered Quantum Key Distribution[EB/OL]. (2017-11-23)[2023-05-10]. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.032312. |
[13] |
YAN Chenhong, LI Zhihui, LIU Lu, et al. Cheating Identifiable (k, n) Threshold Quantum Secret Sharing Scheme[J]. Quantum Information Processing, 2022, 21(8): 1-24.
doi: 10.1007/s11128-021-03349-w |
[14] | CABELLO A. Quantum Key Distribution in the Holevo Limit[EB/OL]. (2000-12-18)[2023-05-10]. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.5635. |
[15] | BENNETT C H. Quantum Cryptography Using Any Two Non-Orthogonal States[EB/OL]. (1992-05-25)[2023-05-10]. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.68.3121. |
[16] | GOLDENBERG L, VAIDMAN L. Quantum Cryptography Based on Orthogonal States[EB/OL]. (1995-02-25)[2023-05-10]. https://doi.org/10.48550/arXiv.quant-ph/9502021. |
[17] | KOASHI M, IMOTO N. Quantum Cryptography Based on Split Transmission of One-Bit Information in Two Steps[EB/OL]. (1997-09-22)[2023-05-10]. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.2383. |
[18] |
BAI Chenming, LI Zhihui, LI Yongming. Sequential Quantum Secret Sharing Using a Single Qubit[J]. Communications in Theoretical Physics, 2018, 69(5): 513-518.
doi: 10.1088/0253-6102/69/5/513 URL |
[19] |
LI Lei, LI Zhi. A Verifiable Multiparty Quantum Key Agreement Based on Bivariate Polynomial[J]. Information Sciences, 2020, 521: 343-349.
doi: 10.1016/j.ins.2020.02.057 URL |
[20] | RAHAMAN R, PARKER M G. Quantum Scheme for Secret Sharing Based on Local Distinguishability[EB/OL]. (2015-02-20)[2023-05-10]. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.022330. |
[21] | YANG Yinghui, GAO Fei, WU Xia, et al. Quantum Secret Sharing via Local Operations and Classical Communication[EB/OL]. (2015-11-20)[2023-05-10]. https://www.nature.com/articles/srep16967. |
[22] |
BAI Chenming, LI Zhihui, XU Tingting, et al. Quantum Secret Sharing Using the d-Dimensional GHZ State[J]. Quantum Information Processing, 2017, 16(3): 1-13.
doi: 10.1007/s11128-016-1481-y URL |
[23] | LU Changbin, MIAO Fuyou, HOU Junpeng, et al. A Verifiable Framework of Entanglement-Free Quantum Secret Sharing with Information-Theoretical Security[EB/OL]. (2019-12-03)[2023-05-10]. https://doi.org/10.1007/s11128-019-2509-x. |
[24] |
LI Fulin, HU Hang, ZHU Shixin, et al. A Verifiable (k, n)- Threshold Dynamic Quantum Secret Sharing Scheme[J]. Quantum Information Processing, 2022, 21(7), 259-268.
doi: 10.1007/s11128-022-03617-3 |
[25] |
KARTICK S, HARI O. Efficient Quantum Secret Sharing without a Trusted Player[J]. Quantum Information Processing, 2020, 19(2): 1-15.
doi: 10.1007/s11128-019-2494-0 |
[26] | WEN Qiaoyan, GUO Fenzhuo, ZHU Fucheng. Design and Analysis of Quantum Confidential Communication Protocols[M]. Beijing: Science Press, 2009. |
温巧燕, 郭奋卓, 朱甫成. 量子保密通信方案的设计与分析[M]. 北京: 科学出版社, 2009. | |
[27] |
LIU Chengji, LI Zhui, BAI Chenming, et al. Quantum Secret Sharing Scheme Based on Local Distinguishability of Orthogonal Seven-Qudit Entangled States[J]. International Journal of Theoretical Physics, 2018, 57(2): 428-442.
doi: 10.1007/s10773-017-3574-5 URL |
[28] | LI Zhihui, JIANG Xue, LIU Lu. Multi-Party Quantum Secret Sharing Based on GHZ State[EB/OL]. (2022-10-08)[2023-05-10]. https://doi.org/10.3390/e24101433. |
[1] | 杨宇光, 卢嘉煜. 一种基于星型簇态的动态的分级的量子秘密共享协议[J]. 信息网络安全, 2023, 23(6): 34-42. |
[2] | 吕凯欣, 李志慧, 黑吉辽, 宋云. 一类图存取结构的最优信息率计算[J]. 信息网络安全, 2022, 22(4): 77-85. |
[3] | 刘璐, 李志慧, 芦殿军, 闫晨红. 基于线性码的量子秘密共享方案[J]. 信息网络安全, 2021, 21(8): 62-69. |
[4] | 刘晓芬, 陈晓峰, 连桂仁, 林崧. 基于d级单粒子的可认证多方量子秘密共享协议[J]. 信息网络安全, 2020, 20(3): 51-55. |
[5] | 刘成基, 李志慧, 司萌萌, 白晨明. 基于局域区分的六粒子正交纠缠态的量子秘密共享方案[J]. 信息网络安全, 2018, 18(4): 56-64. |
[6] | 李志慧, 徐廷廷, 张娜. 一类理想的存取结构的构造[J]. 信息网络安全, 2016, 16(5): 15-22. |
[7] | 程资, 靳俐荣, 石金晶. 基于RS码生成机制的(k,n)门限量子秘密共享方案[J]. 信息网络安全, 2016, 16(4): 44-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||