信息网络安全 ›› 2016, Vol. 16 ›› Issue (4): 44-49.doi: 10.3969/j.issn.1671-1122.2016.04.007

• • 上一篇    下一篇

基于RS码生成机制的(k,n)门限量子秘密共享方案

程资, 靳俐荣, 石金晶()   

  1. 中南大学信息科学与工程学院,湖南长沙 410083
  • 收稿日期:2016-03-11 出版日期:2016-04-20 发布日期:2020-05-13
  • 作者简介:

    作者简介: 程资(1990—),女,河北,硕士研究生,主要研究方向为信息安全、量子密码、量子安全通信等;靳俐荣(1994—),女,内蒙古,本科,主要研究方向为信息安全、量子密码、量子安全通信;石金晶(1986—),女,四川,博士,主要研究方向为信息安全、量子密码、量子安全通信等。

  • 基金资助:
    国家自然科学基金[61272495, 61379153, 61401519];教育部博士点基金[20130162110012];本科生自由探索国家级立项[201510533281]

(k,n) Threshold Quantum Secret Sharing Scheme Based on the Generation of Reed Solomon Code

Zi CHENG, lirong JIN, Jinjing SHI()   

  1. College of Information Science and Engineering, Central South University, Changsha Hunan 410083, China
  • Received:2016-03-11 Online:2016-04-20 Published:2020-05-13

摘要:

文章利用生成矩阵分割法提出了(k,n)量子门限秘密共享方案。与以往经典方案相比,它具有更好的安全性和可靠性。从量子方案的角度看,编码多样性提高了密钥破译难度。针对生成矩阵的循环周期问题和因某些元素不存在本原根而不能构造生成矩阵的问题,文章也提出了解决方案。本文方案的核心思想是参照量子信息与经典信息的对应关系,利用有限域中的本原根构造生成矩阵来实现经典秘密的分割,生成矩阵满足任意k列列向量线性独立;传输采用了基于超密集编码的量子安全直接通信。

关键词: 量子秘密共享, 生成矩阵, 量子安全直接通信, 超密集编码

Abstract:

A (k,n) quantum threshold secret sharing scheme based on generator matrix segmentation is proposed in this paper. Compared with the previous classical schemes, our scheme has better security and reliability, and it also has the diversity of encoding with the quantum system, which can improve the difficulty of deciphering. A solution for the issue of matrix cycle period and the problem that some numbers without the primitive element can’t construct generation matrix is derived. The core idea of our scheme is to achieve the secret division by applying the primitive element in the finite domain for generation matrix based on the correspondence between the quantum and classical information, where the generation matrix satisfies that any k column vectors are linearly independent. The transmission process involves quantum secure direct communication (QSDC) based on super-dense coding.

Key words: quantum secret sharing, generator matrix, quantum secure direct communication, super-dense coding

中图分类号: