信息网络安全 ›› 2023, Vol. 23 ›› Issue (2): 35-44.doi: 10.3969/j.issn.1671-1122.2023.02.005

• 技术研究 • 上一篇    下一篇

基于可信服务的云资源智能优化与决策方法

王艳(), 张坤鹏, 纪志成   

  1. 江南大学物联网应用教育部工程研究中心,无锡 214122
  • 收稿日期:2022-11-26 出版日期:2023-02-10 发布日期:2023-02-28
  • 通讯作者: 王艳 E-mail:wangyan88@jiangnan.edu.cn
  • 作者简介:王艳(1978—),女,江苏,教授,博士,主要研究方向为网络化控制系统|张坤鹏(1998—),男,安徽,硕士研究生,主要研究方向为云资源配置优化与决策|纪志成(1959—),男,浙江,教授,博士,主要研究方向为网络化控制系统
  • 基金资助:
    国家自然科学基金(61973138)

Intelligent Optimization and Decision Method of Cloud Resources Based on Trusted Service

WANG Yan(), ZHANG Kunpeng, JI Zhicheng   

  1. Engineering Research Center of Internet of Things Technology Applications Ministry of Education, Jiangnan University, Wuxi 214122, China
  • Received:2022-11-26 Online:2023-02-10 Published:2023-02-28
  • Contact: WANG Yan E-mail:wangyan88@jiangnan.edu.cn

摘要:

随着云计算的应用与发展,云安全问题备受关注。云资源在受到恶意攻击时会导致无法匹配,合理分配云资源是云安全的前提。为了解决资源可信服务、资源配置优化和安全方案评估的问题,文章提出了基于可信服务的云资源安全智能优化与决策方法。首先,建立资源安全可信度、时间、成本和服务质量的多目标优化模型;然后,采用改进粒子群算法对其求解,并利用基于G1-改进熵权法主客观组合赋权法的VIKOR评估方法选取最佳云安全方案,同时为了克服粒子群早熟收敛,融合动态惯性权值及速度扰动策略改进算法;最后,仿真实验表明,改进算法相对其他算法的解集更广泛,收敛性更好,并验证了可信服务下评估方法的有效性,提高了云资源服务的安全性。

关键词: 云安全, 可信度, 粒子群, 主客观赋权, VIKOR

Abstract:

With the application and development of cloud computing, cloud security has attracted much attention. Cloud resources cannot be matched under malicious attacks. Rational allocation of cloud resources is a prerequisite for cloud security. In order to solve the problems of resource trusted service, resource allocation optimization and security scheme evaluation, this paper innovatively proposed intelligent optimization and decision method of cloud resource security based on trusted service. Firstly, a multi-objective optimization model of resource security reliability, time, cost and service quality was established. Then, the improved particle swarm optimization algorithm was used to solve it, and the VIKOR evaluation method based on G1-improved entropy weight method was used to select the optimal cloud security scheme. Meanwhile, in order to overcome the premature convergence of particle swarm, dynamic inertia weight and velocity perturbation strategy were integrated to improve the algorithm. Finally, simulation experiments show that the improved algorithm has a wider solution set and better convergence than other algorithms, and verifies the effectiveness of the evaluation method under trusted services, and improves the security of cloud resource services.

Key words: cloud security, credibility, particle swarm, subjective and objective empowerment, VIKOR

中图分类号: