信息网络安全 ›› 2015, Vol. 15 ›› Issue (5): 47-55.doi: 10.3969/j.issn.1671-1122.2015.05.008
收稿日期:
2015-04-09
出版日期:
2015-05-10
发布日期:
2018-07-16
作者简介:
作者简介: 王乐(1983-),男,辽宁,硕士,主要研究方向:社交网络、自然语言处理;王勇(1985-),男,黑龙江,工程师,硕士,主要研究方向:海量数据存储、流式数据分析等;王东安(1974-),男,黑龙江,高级工程师,博士,主要研究方向:信息安全;徐小琳(1976-),女,陕西,高级工程师,博士,主要研究方向:网络安全、数据分析等。
基金资助:
WANG Le, WANG Yong(), WANG Dong-an, XU Xiao-lin
Received:
2015-04-09
Online:
2015-05-10
Published:
2018-07-16
摘要:
随着Web 2.0的发展及在线社交媒体的日渐成熟,社交网络俨然成为人们进行社会交互、信息分享、资讯传递的不可或缺的平台。与传统的传播方式不同,信息通过用户交互行为在社交网络中被大规模地迅速传播,这在一定程度上推动了市场营销、信息产业等的发展,但同时也增加了危害事件、不良信息、负面新闻等产生的突发性和频度,其引发的信息问题为互联网的安全运行带来了新的挑战。因此,在人们致力于充分开发和利用在线信息资源以及不断获取服务的同时,为防止信息传播的安全问题对国家和公众造成重大伤害,文章着力于研究社交网络中的信息传播预测问题。通过对信息传播进行预测,可以及早发现传播中的信息存在的潜在威胁,使得我国的信息行业能够更好地前进和发展。文章首先简要介绍了社交网络的概念和信息传播的机制,然后分析并归纳了传播中用户、信息内容和用户间关系这3个影响因素以及与传播预测相关的几个主要特征,接着从基于感染过程、基于传播特征、基于统计推断和基于影响力这4个方面综合论述了当前国内外对于传播预测问题所研究及采用的模型和方法,最后进行总结并讨论未来的研究方向。
中图分类号:
王乐, 王勇, 王东安, 徐小琳. 社交网络中信息传播预测的研究综述[J]. 信息网络安全, 2015, 15(5): 47-55.
WANG Le, WANG Yong, WANG Dong-an, XU Xiao-lin. A Survey of Information Diffusion Prediction in Online Social Networks[J]. Netinfo Security, 2015, 15(5): 47-55.
[1] | WU S, Hofman J M, Mason W A, et al.Who says what to whom on twitter[C]//Proceedings of the 20th international conference on World wide web. ACM, 2011: 705-714. |
[2] | KATZ E.The two-step flow of communication: An up-to-date report on an hypothesis[J]. Public Opinion Quarterly, 1957, 21(1): 61-78. |
[3] | SUH B, HONG L, PIROLLI P, et al.Want to be retweeted? large scale analytics on factors impacting retweet in twitter network[C]//Social computing (socialcom), 2010 ieee second international conference on. IEEE, 2010: 177-184. |
[4] | WENG J, LIM E P, JIANG J, et al.Twitterrank: finding topic-sensitive influential twitterers[C]//Proceedings of the third ACM international conference on Web search and data mining. ACM, 2010: 261-270. |
[5] | CHA M, HADDADI H, BENEVENUTO F, et al.Measuring User Influence in Twitter: The Million Follower Fallacy[J]. ICWSM, 2010, 10(10-17): 30. |
[6] | KWAK H, LEE C, PARK H, et al.What is Twitter, a social network or a news media?[C]//Proceedings of the 19th international conference on World wide web. ACM, 2010: 591-600. |
[7] | BAKSHY E, HOFMANn J M, MASON W A, et al.Everyone's an influencer: quantifying influence on twitter[C]//Proceedings of the fourth ACM international conference on Web search and data mining. ACM, 2011: 65-74. |
[8] | YU L, ASUR S, HUBERMAN B A. What trends in Chinese social media[C]//Proceedings of The fifth ACM workshop on Social Network Mining and Analysis.ACM, 2011: 978-1-4503-0225-8. |
[9] | 曹玖新,吴江林,石伟,等. 新浪微博网信息传播分析与预测[J]. 计算机学报,2014,37(4):5. |
[10] | CONOVER M D, GONCALVES B, RATKIEWICZ J, et al.Predicting the political alignment of twitter users[C]//Proceedings of 3rd IEEE Conference on Social Computing (SocialCom), 2011: 192-199. |
[11] | BAKSHY E, ROSENN I, MARLOW C, et al.The role of social networks in information diffusion[C]//Proceedings of the 21st international conference on World Wide Web. ACM, 2012: 519-528. |
[12] | CHENG J, ADAMIC L, DOW P A, et al.Can cascades be predicted?[C]//Proceedings of the 23rd international conference on World wide web. International World Wide Web Conferences Steering Committee, 2014: 925-936. |
[13] | LESKOVEC J, MCGLOHON M, FALOUTSOS C, et al. Cascading Behavior in Large Blog Graphs[EB/OL]. . |
[14] | XIONG F, LIU Y, ZHANG Z, et al.An information diffusion model based on retweeting mechanism for online social media[J]. Physics Letters A, 2012, 376(30): 2103-2108. |
[15] | WANG H, LI Y P, FENG Z N, et al.ReTweeting analysis and prediction in microblogs: An epidemic inspired approach[J]. China Communications, 2013, 10(3): 13-24. |
[16] | WANG F, WANG H, XU K.Diffusive logistic model towards predicting information diffusion in online social networks[C]//Distributed Computing Systems Workshops (ICDCSW), 2012 32nd International Conference on. IEEE, 2012: 133-139. |
[17] | ZAMAN T R, HERBRICH R, VAN G J, et al.Predicting information spreading in twitter[C]//Workshop on computational social science and the wisdom of crowds, nips. 2010, 104(45): 17599-601. |
[18] | PENG H K, ZHU J, PIAO D, et al.Retweet modeling using conditional random fields[C]//Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on. IEEE, 2011: 336-343. |
[19] | ZHU J, XIONG F, PIAO D Z, et al.Statistically modeling the effectiveness of disaster information in social media.[C]//IEEE Global Humanitarian Technology Conference, 2011:431-436. |
[20] | PETROVIC S, OSBOME M, LAVRENKO V. RT to win! Predicting message propagation in twitter[EB/OL]. . |
[21] | HONG L, DAN O, DAVISON B D.Predicting popular messages in twitter[C]//Proceedings of the 20th international conference companion on World wide web. ACM, 2011: 57-58. |
[22] | TSUR O, RAPPOPORT A.What's in a hashtag?: content based prediction of the spread of ideas in microblogging communities[C]//Proceedings of the fifth ACM international conference on Web search and data mining. ACM, 2012: 643-652. |
[23] | LAGNIER C, DENOYER L, GAUSSIER E, et al.Predicting information diffusion in social networks using content and user's profiles[C]//European Conference on Information Retrieval, Moscou, Russia. Mar 2013: 74-85. |
[24] | MA Z, SUN A, CONG G.On predicting the popularity of newly emerging hashtags in twitter[J]. Journal of the American Society for Information Science and Technology, 2013, 64(7): 1399-1410. |
[25] | YANG Z, GUO J, CAI K, et al.Understanding retweeting behaviors in social networks[C]//Proceedings of the 19th ACM international conference on Information and knowledge management. ACM, 2010: 1633-1636. |
[26] | WANG J, Li W, Weili W.Predicting Information Popularity Degree in Microblogging Diffusion Networks[J]. International Journal of Multimedia & Ubiquitous Engineering, 2014, 9(2):21. |
[27] | LU X, YU Z, GUO B, et al.Predicting the content dissemination trends by repost behavior modeling in mobile social networks[J]. Journal of Network and Computer Applications, 2014, 42: 197-207. |
[28] | CUI P, JIN S, YU L, et al.Cascading outbreak prediction in networks: a data-driven approach[C]//Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2013: 901-909. |
[29] | GUILLE A, HACID H, FAVRE C, et al.Information diffusion in online social networks: A survey[J]. ACM SIGMOD Record, 2013, 42(2): 17-28. |
[30] | GOMEZ R M, LESKOVEC J, KRAUSE A.Inferring networks of diffusion and influence[C]//Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2010: 1019-1028. |
[31] | MYERS S, LESKOVEC J.On the convexity of latent social network inference[C]//Advances in Neural Information Processing Systems. 2010: 1741-1749. |
[32] | RODRIGUEZ M G, BALDUZZI D, SCHOLKOPF B. Uncovering the temporal dynamics of diffusion networks[J]. arXiv preprint arXiv:1105.0697, 2011. |
[33] | RODRIGUEZ M G, SCHOLKOPF B. Submodular inference of diffusion networks from multiple trees[J]. arXiv preprint arXiv:1205.1671, 2012. |
[34] | LESKOVEC J, SCHOLKOPF B.Structure and Dynamics of Information pathways in online media[C]//Proceedings of the sixth ACM international conference on Web search and data mining. ACM, 2013: 23-32. |
[35] | KIMURA M, SAITO K, OHARA K, et al.Learning information diffusion model in a social network for predicting influence of nodes[J]. Intelligent Data Analysis, 2011, 15(4): 633-652. |
[36] | WANG S, HU X, YU P S, et al.MMRate: inferring multi-aspect diffusion networks with multi-pattern cascades[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2014: 1246-1255. |
[37] | KEMPE D, KLEINBERG J, TARDOS É.Maximizing the spread of influence through a social network[C]//Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2003: 137-146. |
[38] | GALUBA W, ABERER K, CHAKRABORTY D, et al.Outtweeting the twitterers-predicting information cascades in microblogs[C]//Proceedings of the 3rd conference on Online social networks. 2010: 3. |
[39] | SAITO K, KIMURA M, OHARA K, et al.Selecting information diffusion models over social networks for behavioral analysis[M]. Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2010: 180-195. |
[40] | DICKENS L, MOLLOY I, LOBO J, et al.Learning stochastic models of information flow[C]//Data Engineering (ICDE), 2012 IEEE 28th International Conference on. IEEE, 2012: 570-581. |
[41] | GUILLE A, HACID H.A predictive model for the temporal dynamics of information diffusion in online social networks[C]//Proceedings of the 21st international conference companion on World Wide Web. ACM, 2012: 1145-1152. |
[42] | YANG J, LESKOVEC J.Modeling information diffusion in implicit networks[C]//Data Mining (ICDM), 2010 IEEE 10th International Conference on. IEEE, 2010: 599-608. |
[43] | BIAN J, YANG Y, CHUA T S.Predicting trending messages and diffusion participants in microblogging network[C]//Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. ACM, 2014: 537-546. |
[44] | 杨佳玉,叶昕昕,陈思聪,等. 社交网站安全问题分析与对策研究[J]. 信息网络安全,2014,(4):82-87. |
[45] | 钟玲,林柏钢. 社交网Twitter平台的人物关系网社区发现[J]. 信息网络安全,2014,(5):32-36. |
[46] | 薛一波,鲍媛媛,易成岐. SPNR:社交网络中的新型谣言传播模型[J]. 信息网络安全,2014,(1):5-9. |
[47] | 刘东亮,马春光. 基于NS-3的机会网络路由协议仿真[J]. 信息网络安全,2014,(5):52-58. |
[48] | KHALIL E B, DILKINA B, SONG L.Scalable diffusion-aware optimization of network topology[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2014: 1226-1235. |
[49] | 周永进,马春光,苗俊峰,等. 基于社区层次的机会网络移动模型[J]. 信息网络安全,2014,(8):45-49. |
[50] | 齐峰,马春光,周永进,等. 一种基于网络编码的机会社会网络路由算法[J]. 信息网络安全,2015,(2):51-56. |
[51] | 王明元,贾焰,周斌,等. 一种基于主题相关性分类的微博话题立场研判方法[J]. 信息网络安全,2014,(9):17-21. |
[52] | 严岭,李逸群. 网络舆情事件中的微博炒作账号发现方法研究[J]. 信息网络安全,2014,(9):26-29. |
[53] | 柳俊,周斌,黄九鸣. 基于二部图投影的微博事件关联分析方法研究[J]. 信息网络安全,2014,(9):44-49. |
[54] | 郑飞,张蕾. 基于分类的中文微博热点话题发现方法研究[J]. 信息网络安全,2014,(9):127-131. |
[55] | MYERS S A, LESKOVEC J.Clash of the contagions: Cooperation and competition in information diffusion[C]//ICDM. 2012, 12: 539-548. |
[56] | RONG X, MEI Q.Diffusion of innovations revisited: from social network to innovation network[C]//Proceedings of the 22nd ACM international conference on Conference on information & knowledge management. ACM, 2013: 499-508. |
[57] | MYERS S A, ZHU C, LESKOVEC J.Information diffusion and external influence in networks[C]//Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012: 33-41. |
[58] | 孙兴东,李爱平,李树栋. 一种基于聚类的微博关键词提取方法的研究与实现[J]. 信息网络安全,2014,(12):27-31. |
[59] | 李凌云,敖吉,乔治,等. 基于微博的安全事件实时监测框架研究[J]. 信息网络安全,2015,(1):16-23. |
[60] | 李迎涛,马春光,李增鹏. 基于域划分和接口分离的涉密信息系统边界防护技术[J]. 信息网络安全,2014.(1):25-29. |
[61] | 刘楠,韩丽芳,夏坤峰,等. 一种改进的基于抽象语法树的软件源代码比对算法[J]. 信息网络安全,2014.(1):38-42. |
[62] | 张涛,焦英楠,禄立杰,等. 一种基于Windows内核驱动的可疑样本采集系统的设计与实现[J]. 信息网络安全,2014,(2):41-47. |
[63] | 张涛,牛伟颖,孟正,等. 基于Windows内核模式下进程监控的用户权限控制系统设计与实现[J]. 信息网络安全,2014,(4):13-19. |
[64] | 孙哲,刘大光,武学礼,等. 基于模糊测试的网络协议自动化漏洞挖掘工具设计与实现[J]. 信息网络安全,2014,(6):23-30. |
[1] | 武伟, 徐莎莎, 郭森森, 李晓宇. 基于位置社交网络的兴趣点组合推荐算法研究[J]. 信息网络安全, 2023, 23(9): 75-84. |
[2] | 马相军, 何泾沙, 吴铁军, 范敦球. 社交网络关键黑客节点识别方法[J]. 信息网络安全, 2023, 23(1): 57-65. |
[3] | 熊建英. 基于信息行为的社交网络节点信誉评估模型研究[J]. 信息网络安全, 2021, 21(12): 51-59. |
[4] | 夏天雨, 顾益军. 一种基于改进DynamicTriad模型的动态链路预测方法[J]. 信息网络安全, 2020, 20(9): 97-101. |
[5] | 莫靖杰, 屠晨阳, 彭佳, 袁珺. 基于多源信息融合的社交网络挖掘[J]. 信息网络安全, 2017, 17(9): 73-76. |
[6] | 马国峻, 李凯, 裴庆祺, 詹阳. 一种社交网络中细粒度人脸隐私保护方案[J]. 信息网络安全, 2017, 17(8): 26-32. |
[7] | 刘浩, 陈志刚, 张连明. 基于社区的移动社交网络安全路由算法设计与实现[J]. 信息网络安全, 2017, 17(7): 25-31. |
[8] | 杨艳萍. 基于双向加权图的社交网络用户可信度算法研究[J]. 信息网络安全, 2017, 17(7): 40-44. |
[9] | 李晴, 叶阿勇, 许力. 社交网络中基于定位欺骗的隐私攻击研究[J]. 信息网络安全, 2017, 17(5): 51-56. |
[10] | 熊金波, 马蓉, 张媛媛, 戴睿煜. 面向社交网络的图片信息隐藏方法与实现[J]. 信息网络安全, 2017, 17(3): 6-8. |
[11] | 罗梁, 王文贤, 钟杰, 王海舟. 跨社交网络的实体用户关联技术研究[J]. 信息网络安全, 2017, 17(2): 51-58. |
[12] | 楼叶. 基于信息传播模型研究的舆情导控方法探寻[J]. 信息网络安全, 2016, 16(9): 257-266. |
[13] | 钟杰, 王海舟, 王文贤. 基于话题的微博信息传播拓扑结构研究[J]. 信息网络安全, 2016, 16(3): 64-70. |
[14] | 许为, 林柏钢, 林思娟, 杨旸. 一种基于用户交互行为和相似度的社交网络社区发现方法研究[J]. 信息网络安全, 2015, 15(7): 77-83. |
[15] | 李旬, 徐剑, 焦英楠, 严寒冰. 基于异常特征的社交网页检测技术研究[J]. 信息网络安全, 2015, 15(5): 41-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||