信息网络安全 ›› 2023, Vol. 23 ›› Issue (1): 57-65.doi: 10.3969/j.issn.1671-1122.2023.01.007

• 技术研究 • 上一篇    下一篇

社交网络关键黑客节点识别方法

马相军1, 何泾沙1(), 吴铁军2, 范敦球2   

  1. 1.北京工业大学信息学部,北京 100124
    2.绿盟科技集团股份有限公司,北京 100089
  • 收稿日期:2022-10-18 出版日期:2023-01-10 发布日期:2023-01-19
  • 通讯作者: 何泾沙 E-mail:jhe@bjut.edu.cn
  • 作者简介:马相军(1982—),男,山东,博士研究生,主要研究方向为网络安全、社交网络分析|何泾沙(1961—),男,陕西,教授,博士,主要研究方向为计算机和网络安全、测试与分析和云计算|吴铁军(1978—),男,湖北,研究员,硕士,主要研究方向为入侵检测、威胁线索推理|范敦球(1978—),男,福建,研究员,硕士,主要研究方向为威胁情报分析、APT追踪溯源
  • 基金资助:
    国家自然科学基金(61602456);CCF-绿盟科技“鲲鹏”科研基金(CCF-NSFOCUS 2021004)

An Approach to Identifying Key Hackers in Social Networks

MA Xiangjun1, HE Jingsha1(), WU Tiejun2, FAN Dunqiu2   

  1. 1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
    2. NSFOCUS Technologies Group Co., Ltd., Beijing 100089, China
  • Received:2022-10-18 Online:2023-01-10 Published:2023-01-19
  • Contact: HE Jingsha E-mail:jhe@bjut.edu.cn

摘要:

计算机网络安全形势严峻,对实施网络攻击的黑客以及黑客所在组织的研究越来越重要。社交网络有不受时间空间限制的特点,因此成为黑客交流的主要平台,也是网络安全研究人员获取信息的重要渠道。为了对社交网络中的黑客进行分析,文章提出一种基于社区发现的社交网络关键黑客节点识别方法。首先,文章通过图卷积网络以无监督方式实现网络的社区划分;然后,利用用户之间的交互行为和主题相似度,通过改进的PageRank算法实现社区内黑客节点的影响力度量;最后,通过独立级联模型评估关键黑客节点对网络传播效率的作用。在Twitter数据集上的实验表明,该方法能有效识别社交网络中的关键黑客用户。

关键词: 关键黑客节点识别, 影响力度量, 社区发现, 社交网络分析

Abstract:

The situation of computer network security is very serious, so the research on the hackers who carry out network attacks and the organizations where the hackers are located becomes more and more important. Social networks have become the main platform for hackers to communicate with each other and an important channel for network security researchers to obtain information because of their characteristics of not being restricted by time and space. In order to analyze the hackers in social networks, this paper proposed a community detection-based method for identifying key hackers in social networks. Firstly, the article imlemented community segmentation of the network in an unsupervised manner through graph convolutional networks. Secondly, through the improved PageRank algorithm, the topic similarity and interaction between users were used to measure the influence of users in the community. Finally, the efficiency of key hackers in network propagation was evaluated through an independent cascade model. Experiments on the Twitter dataset show that the method can effectively identify key hacker users in social networks.

Key words: key hacker node identification, impact metrics, community detection, social network analysis

中图分类号: