信息网络安全 ›› 2023, Vol. 23 ›› Issue (1): 44-56.doi: 10.3969/j.issn.1671-1122.2023.01.006

• 技术研究 • 上一篇    下一篇

基于社区发现的社交网络影响力阻断最大化算法

慕志颖, 许加全, 李晓宇()   

  1. 西北工业大学深圳研究院,深圳 518057
  • 收稿日期:2022-08-16 出版日期:2023-01-10 发布日期:2023-01-19
  • 通讯作者: 李晓宇 E-mail:lixiaoyu@nwpu.edu.cn
  • 作者简介:慕志颖(1994—),女,山东,博士研究生,主要研究方向为数据挖掘和社交网络舆论对抗|许加全(1994—),男,福建,硕士研究生,主要研究方向为社交网络舆论对抗|李晓宇(1980—),男,河南,副研究员,博士,主要研究方向为社交网络舆论对抗和网络空间安全
  • 基金资助:
    国家自然科学基金(62272389);深圳市基础研究资助项目(20210317191843003);陕西省重点研发计划(2021ZDLGY05-01)

Community-Detection-Based Influence Blocking Maximization Algorithm in Social Network

MU Zhiying, XU Jiaquan, LI Xiaoyu()   

  1. Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
  • Received:2022-08-16 Online:2023-01-10 Published:2023-01-19
  • Contact: LI Xiaoyu E-mail:lixiaoyu@nwpu.edu.cn

摘要:

随着社交网络的日益普及,社交网络已经成为信息传播的主要平台之一。由于对社交网络内容监管相对困难,导致一些负面信息容易快速扩散并产生较大的不良影响。影响力阻断最大化问题旨在寻找需要采用正影响的节点集,使信息传播过程中被负向消息影响的节点数量最小化。针对现有社交网络影响力阻断算法运行时间复杂度较高的问题,文章提出了基于社区发现的影响力阻断最大化算法,该算法首先使用社交网络节点的扩展h指数中心性来选择候选种子节点;然后以这些种子节点为起点,利用标签传播算法发现社交网络中的社区;接着通过计算社交网络社区的关系矩阵及当前关系矩阵的模块度对社区进行合并;最后,计算初始种子节点的标签度量等级,选取前$k$个节点作为具有最大阻断影响力的成员。实验结果表明,该算法阻断性能好,且时间复杂度低。

关键词: 影响力阻断, 社区发现, 标签传播, 社区合并

Abstract:

With the increasing popularity of social networks, social networks have become the main platform for information dissemination. The relative difficulty of regulating the content of social networks has led to some negative messages spreading easily and producing large adverse effects. The influence blocking maximization aims to find the set of nodes that need to adopt positive influence to minimize the number of nodes affected by negative messages in the process of information dissemination. To address the problem of high running time complexity of existing social network influence blocking algorithms, in this paper, we proposed an influence blocking maximization algorithm based on community detection, which first utilized the extended h-index centrality of social network nodes to select candidate seed nodes, and then used these seed nodes as the starting point to discover communities in social networks with a label propagation algorithm, followed by calculating the social network communities by of the relationship matrix and the modularity of the current relationship matrix to merge the communities, and finally, the labeling metric rank of the initial seed nodes was calculated and the top k nodes were selected as the members with the maximum blocking influence. The experimental results show that the algorithm has good blocking performance and low time complexity.

Key words: influence blocking, community detection, label propagation, community merging

中图分类号: