信息网络安全 ›› 2023, Vol. 23 ›› Issue (9): 75-84.doi: 10.3969/j.issn.1671-1122.2023.09.007
收稿日期:
2023-01-19
出版日期:
2023-09-10
发布日期:
2023-09-18
通讯作者:
李晓宇
E-mail:lixiaoyu@.nwpu.edu.cn
作者简介:
武伟(1984—),男,山东,博士研究生,主要研究方向为数据挖掘和社交网络舆论对抗|徐莎莎(1995—),女,山东,硕士,主要研究方向为数据挖掘和社交网络舆论对抗|郭森森(1990—),男,河南,博士研究生,主要研究方向为数据挖掘和深度学习|李晓宇(1980—),男,河南,副研究员,博士,主要研究方向为网络空间安全和对抗机器学习
基金资助:
WU Wei, XU Shasha, GUO Sensen, LI Xiaoyu()
Received:
2023-01-19
Online:
2023-09-10
Published:
2023-09-18
Contact:
LI Xiaoyu
E-mail:lixiaoyu@.nwpu.edu.cn
摘要:
随着智能手机的普及和基于用户地理位置信息服务的增多,用户数据量呈爆发式增长,海量数据之间的稀疏性成为了限制基于位置社交网络(Location-Based Social Network,LBSN)的推荐系统性能的一个主要因素。基于此,文章提出了一个基于位置社交网络的兴趣点组合推荐模型(Geographical LightGCN,GLGCN),该模型由协作偏好模块和地理偏好模块两部分组成,其中,协作偏好模块使用图卷积网络深度挖掘用户和兴趣点的嵌入表示,获取用户的协作偏好;地理偏好模块结合兴趣点的相关性和用户轨迹,使用基于门控循环单元(Gate Recurrent Unit,GRU)的序列模型捕获用户的序列偏好。文章将两个模块的推荐分数以线性加权的方式进行组合,得到最终推荐结果。实验表明,相较于现有其他算法,文章提出的组合推荐算法具有更优秀的性能。
中图分类号:
武伟, 徐莎莎, 郭森森, 李晓宇. 基于位置社交网络的兴趣点组合推荐算法研究[J]. 信息网络安全, 2023, 23(9): 75-84.
WU Wei, XU Shasha, GUO Sensen, LI Xiaoyu. Research on Hybrid Recommendation Algorithm for Points of Interest in Location-Based Social Network[J]. Netinfo Security, 2023, 23(9): 75-84.
[1] |
BOYD D M, ELLISION N B. Social Network Sites: Definition, History, and Scholarship[J]. Journal of Computer-Mediated Communication, 2007, 13(1): 210-230.
doi: 10.1111/j.1083-6101.2007.00393.x URL |
[2] | WANG Xiang, HE Xiannan, CAO Yixin, et al. KGAT: Knowledge Graph Attention Network for Recommendation[C]// KDD. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: KDD, 2019: 950-958. |
[3] | WANG Hongwei, ZHAO Miao, XIE Xing, et al. Knowledge Graph Convolutional Networks for Recommender Systems[C]// ACM. The World Wide Web Conference. New York: ACM, 2019: 3307-3313. |
[4] | AHMAD W, AHMAD M. Collecting User Access Patterns for Building User Profiles and Collaborative Filtering[C]// ACM. The 4th International Conference on Intelligent User Interfaces. New York: ACM, 1998: 57-64. |
[5] | LOPS P, DE G M, SEMERARO G, et al. A Semantic Content-Based Recommender System Integrating Folksonomies for Personalized Access[J]. Web Personalization in Intelligent Environments, 2009(5): 27-47. |
[6] | DE G M, LOPS P, SEMERARO G, et al. Integrating Tags in a Semantic Content-Based Recommender[C]// ACM. The 2008 ACM Conference on Recommender Systems. New York: ACM, 2008: 163-170. |
[7] | CANTADOR I, BELLOGIN A, VALLET D. Content-Based Recommendation in Social Tagging Systems[C]// ACM. Proceedings of the Fourth ACM Conference on Recommender Systems. New York: ACM, 2010: 237-240. |
[8] | DE G M, LOPS P, MUSTO C, et al. Semantics-Aware Content-Based Recommender Systems[J]. Recommender Systems Handbook, 2015(6): 119-159. |
[9] |
GABRILOVICH E, MARKOVITCH S. Wikipedia-Based Semantic Interpretation for Natural Language Processing[J]. Journal of Artificial Intelligence Research, 2009, 34: 443-498.
doi: 10.1613/jair.2669 URL |
[10] | JOSEPH K, JIANG Hui. Content Based News Recommendation via Shortest Entity Distance Over Knowledge Graphs[C]// ACM. The World Wide Web Conference. New York: ACM, 2019: 690-699. |
[11] | ZHAO Guoping, ZHANG Mingyu, LI Yaxian, et al. Pyramid Regional Graph Representation Learning for Content-Based Video Retrieval[J]. Information Processing & Management, 2021, 58(3): 488-501. |
[12] |
SHI Chuan, HAN Xiaotian, SONG Li, et al. Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(4): 1413-1425.
doi: 10.1109/TKDE.69 URL |
[13] | YING R, HE Ruining, CHEN Kaifeng, et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]// ACM. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 974-983. |
[14] | WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural Graph Collaborative Filtering[C]// ACM. The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. |
[15] | HE Xiangnan, DENG Kuan, WANG Xiang, et al. Lightgcn: Simplifying and Powering Graph Convolution Network for Recommendation[C]// ACM. The 43rd International ACM SIGIR Conference on Rresearch and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
[16] |
ZAHRA S, GHAZANFAR M A, KHALID A, et al. Novel Centroid Selection Approaches for K-Means Clustering Based Recommender Systems[J]. Information Sciences, 2015, 320: 156-189.
doi: 10.1016/j.ins.2015.03.062 URL |
[17] | VERMA S K, MITTAL N, AGARWAL B. Hybrid Recommender System Based on Fuzzy Clustering and Collaborative Filtering[C]// IEEE. The 4th International Conference on Computer and Communication Technology. New York: IEEE, 2013: 116-120. |
[18] | LEE O J, JUNG J J, YOU E. Predictive Clustering for Performance Stability in Collaborative Filtering Techniques[C]// IEEE. The 2nd International Conference on Cybernetics. New York: IEEE, 2015: 48-55. |
[19] |
MORADI P, AHMADIAN S. A Reliability-Based Recommendation Method to Improve Trust-Aware Recommender Systems[J]. Expert Systems with Applications, 2015, 42(21): 7386-7398.
doi: 10.1016/j.eswa.2015.05.027 URL |
[20] | LI Hui, MA Xiaoping, SHI Jun. Incorporating Trust Relation with PMF to Enhance Social Network Recommendation Performance[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2016, 30(6): 16-29. |
[21] |
WANG Fei, LI Tao, WANG Xin, et al. Community Discovery Using Nonnegative Matrix Factorization[J]. Data Mining and Knowledge Discovery, 2011, 22: 493-521.
doi: 10.1007/s10618-010-0181-y URL |
[22] |
ZHENG Xiaoyao, LUO Yonglong, SUN Liping, et al. A Novel Social Network Hybrid Recommender System Based on Hypergraph Topologic Structure[J]. World Wide Web, 2018, 21: 985-1013.
doi: 10.1007/s11280-017-0494-5 |
[23] | YE Mao, YIN Peifeng, LEE W C, et al. Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation[C]// ACM. The 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011: 325-334. |
[24] | CHENG Chen, YANG Haiqin, KING I, et al. Fused Matrix Factorization with Geographical and Social Influence in Location-Based Social Networks[C]// AAAI. The AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2012: 17-23. |
[25] | LIAN Defu, ZHAO Cong, XIE Xing, et al. GeoMF: Joint Geographical Modeling and Matrix Factorization for Point-of-Interest Recommendation[C]// ACM. The 20 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 831-840. |
[26] | ZHAO Pengpeng, ZHU Haifeng, LIU Yanchi, et al. Where to Go Next: A Spatio-Temporal LSTM Model for Next POI Recommendation[EB/OL]. (2018-06-16)[2023-01-18]. https://arxiv.org/abs/1806.06671. |
[27] |
ZHANG Zhiqian, LI Chenliang, WU Zhiyong, et al. Next: A Neural Network Framework for Next POI Recommendation[J]. Frontiers of Computer Science, 2020, 14: 314-333.
doi: 10.1007/s11704-018-8011-2 |
[28] | LIU Yang, WU Anbo. POI Recommendation Method Using Deep Learning in Location-Based Social Networks[J]. Wireless Communications and Mobile Computing, 2021(1): 1-11. |
[29] | WEI Xuemei, LIU Yezheng, SUN Jianshan, et al. Dual Subgraph-Based Graph Neural Network for Friendship Prediction in Location-Based Social Networks[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(3): 1-28. |
[30] | HE Xiangnan, DENG Kuan, WANG Xiang, et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation[C]// ACM. The 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
[31] |
ISLAM M A, MOHAMMAD M M, DAS S S S, et al. A Survey on Deep Learning Based Point-of-Interest (POI) Recommendations[J]. Neurocomputing, 2022, 472: 306-325.
doi: 10.1016/j.neucom.2021.05.114 URL |
[32] |
WU Shiwen, ZHANG Yuanxing, GAO Chengliang, et al. GARG: Anonymous Recommendation of Point-of-Interest in Mobile Networks by Graph Convolution Network[J]. Data Science and Engineering, 2020, 5: 433-447.
doi: 10.1007/s41019-020-00135-z |
[1] | 秦中元, 马楠, 余亚聪, 陈立全. 基于双重图神经网络和自编码器的网络异常检测[J]. 信息网络安全, 2023, 23(9): 1-11. |
[2] | 公鹏飞, 谢四江, 程安东. 基于HotStuff改进的多主节点共识算法[J]. 信息网络安全, 2023, 23(9): 108-117. |
[3] | 戴玉, 周非, 薛丹. 基于中国剩余定理秘密共享的切换认证协议[J]. 信息网络安全, 2023, 23(9): 118-128. |
[4] | 张玉臣, 张雅雯, 吴越, 李程. 基于时频图与改进E-GraphSAGE的网络流量特征提取方法[J]. 信息网络安全, 2023, 23(9): 12-24. |
[5] | 刘芹, 王卓冰, 余纯武, 王张宜. 面向云安全的基于格的高效属性基加密方案[J]. 信息网络安全, 2023, 23(9): 25-36. |
[6] | 周权, 陈民辉, 卫凯俊, 郑玉龙. 基于SM9的属性加密的区块链访问控制方案[J]. 信息网络安全, 2023, 23(9): 37-46. |
[7] | 张国敏, 张少勇, 张津威. 基于PPO算法的攻击路径发现与寻优方法[J]. 信息网络安全, 2023, 23(9): 47-57. |
[8] | 薛羽, 张逸轩. 深层神经网络架构搜索综述[J]. 信息网络安全, 2023, 23(9): 58-74. |
[9] | 浦珺妍, 李亚辉, 周纯杰. 基于概率攻击图的工控系统跨域动态安全风险分析方法[J]. 信息网络安全, 2023, 23(9): 85-94. |
[10] | 赵佳豪, 蒋佳佳, 张玉书. 基于动态默克尔哈希树的跨链数据一致性验证模型[J]. 信息网络安全, 2023, 23(9): 95-107. |
[11] | 邵震哲, 蒋佳佳, 赵佳豪, 张玉书. 面向跨链的改进加权拜占庭容错算法[J]. 信息网络安全, 2023, 23(8): 109-120. |
[12] | 谢四江, 程安东, 公鹏飞. 一种基于QKD的多方拜占庭共识协议[J]. 信息网络安全, 2023, 23(8): 41-51. |
[13] | 李志慧, 罗双双, 韦性佳. 基于一类受限存取结构上的量子秘密共享方案[J]. 信息网络安全, 2023, 23(8): 32-40. |
[14] | 王鹃, 张冲, 龚家新, 李俊娥. 基于机器学习的模糊测试研究综述[J]. 信息网络安全, 2023, 23(8): 1-16. |
[15] | 覃思航, 代炜琦, 曾海燕, 顾显俊. 基于区块链的电力应用数据安全共享研究[J]. 信息网络安全, 2023, 23(8): 52-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||