信息网络安全 ›› 2023, Vol. 23 ›› Issue (9): 58-74.doi: 10.3969/j.issn.1671-1122.2023.09.006
收稿日期:
2023-04-28
出版日期:
2023-09-10
发布日期:
2023-09-18
通讯作者:
薛羽
E-mail:xueyu@nuist.edu.cn
作者简介:
薛羽(1981—),男,山东,教授,博士,CCF会员,主要研究方向为深度学习、演化计算、机器学习和计算机视觉|张逸轩(1998—),男,江苏,硕士研究生,主要研究方向为演化计算、多目标优化和神经架构搜索
基金资助:
Received:
2023-04-28
Online:
2023-09-10
Published:
2023-09-18
Contact:
XUE Yu
E-mail:xueyu@nuist.edu.cn
摘要:
近年来,深度神经网络应用到图像识别、语音识别、目标检测、机器翻译等领域,加速了网络的性能演进与灵活性提升。但这些网络通常结构复杂,需要拥有大量专业知识的人员消耗大量时间调整参数以匹配具体环境。这样通过人工来调整参数的常规方法效率较低且错误频出。因此,神经网络架构搜索(NAS)的研究被提上日程。文章对现有的NAS相关算法进行了较全面地介绍和评价,并对未来神经网络架构搜索的发展提出构想。
中图分类号:
薛羽, 张逸轩. 深层神经网络架构搜索综述[J]. 信息网络安全, 2023, 23(9): 58-74.
XUE Yu, ZHANG Yixuan. Survey on Deep Neural Architecture Search[J]. Netinfo Security, 2023, 23(9): 58-74.
[1] | ZOPH B, LE Q V. Neural Architecture Search with Reinforcement Learning[EB/OL]. (2016-11-05)[2023-04-20]. https://doi.org/10.48550/arXiv.1611.01578. |
[2] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[EB/OL]. (2014-09-04)[2023-04-20]. https://doi.org/10.48550/arXiv.1409.1556. |
[3] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep Residual Learning for Image Recognition[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2016: 770-778. |
[4] | HUANG Guo, LIU Zhuang, VAN D M L, et al. Densely Connected Convolutional Networks[C]// IEEE. IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 4700-4708. |
[5] | HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL]. (2017-04-17)[2023-04-20]. https://doi.org/10.48550/arXiv.1704.0486. |
[6] | CHU Xiangxiang, ZHANG Bo, XU Ruijun. FairNAS: Rethinking Evaluation Fairness of Weight Sharing Neural Architecture Search[C]// IEEE. IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2021: 12239-12248. |
[7] |
TIAN Shuo, HU Kai, GUO Shasha, et al. Evolutionary Recurrent Neural Architecture Search[J]. IEEE Embedded Systems Letters, 2020, 13(3): 110-113.
doi: 10.1109/LES.2020.3005753 URL |
[8] | BENDER G, KINDERMANS P J, ZOPH B, et al. Understanding and Simplifying One-Shot Architecture Search[C]// PMLR. International Conference On Machine Learning. New York: PMLR, 2018: 550-559. |
[9] | LU Zhichao, WHALEN I, BODDETI V, et al. NSGA-Net: Neural Architecture Search Using Multi-Objective Genetic Algorithm[C]// ACM. Genetic and Evolutionary Computation Conference. New York: ACM, 2019: 419-427. |
[10] | MICHEL G, ALAOUI M A, LEBOIS A, et al. Dvolver: Efficient Pareto-Optimal Neural Network Architecture Search[EB/OL]. (2019-02-05)[2023-04-20]. https://doi.org/10.48550/arXiv.1902.01654. |
[11] | YANG Zhaohui, WANG Yunhe, CHEN Xinghao, et al. CARS: Continuous Evolution for Efficient Neural Architecture Search[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 1829-1838. |
[12] |
WANG E K, XU S P, CHEN C M, et al. Neural-Architecture-Search-Based Multiobjective Cognitive Automation System[J]. IEEE Systems Journal, 2020, 15(2): 2918-2925.
doi: 10.1109/JSYST.2020.3002428 URL |
[13] | WANG Zhehui, LUO Tao, LI Miqing, et al. Evolutionary Multi-Objective Model Compression for Deep Neural Networks[J]. IEEE Computational Intelligence Magazine, 2021, 16(3): 10-21. |
[14] | CHU Xiangxiang, ZHANG Bo, XU Ruijun. Multi-Objective Reinforced Evolution in Mobile Neural Architecture Search[C]// Springer. Computer Vision-ECCV 2020 Workshops. Berlin: Springer, 2021: 99-113. |
[15] | CAI Han, CHEN Tianyao, ZHANG Weinan, et al. Efficient Architecture Search by Network Transformation[C]// AAAI. AAAI Conference on Artificial Intelligence. Menlo: AAAI, 2018: 1-8. |
[16] | SUGANUMA M, SHIRAKAWA S, NAGAO T. A Genetic Programming Approach to Designing Convolutional Neural Network Architectures[C]// CoNLL. Genetic and Evolutionary Computation Conference. New York: CoNLL, 2017: 497-504. |
[17] | MENDOZA H, KLEIN A, FEURER M, et al. Towards Automatically-Tuned Neural Networks[C]// PMLR. Workshop on Automatic Machine Learning. New York: PMLR, 2016: 58-65. |
[18] | BROCK A, LIM T, RITCHIE J M, et al. SMASH: One-Shot Model Architecture Search through Hypernetworks[EB/OL]. (2017-08-17)[2023-04-20]. https://doi.org/10.48550/arXiv.1708.05344. |
[19] | CAI Han, YANG Jiacheng, ZHANG Weinan, et al. Path-Level Network Transformation for Efficient Architecture Search[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2018: 678-687. |
[20] | ELSKEN T, METZEN J H, HUTTER F. Simple and Efficient Architecture Search for Convolutional Neural Networks[EB/OL]. (2017-11-13)[2023-04-20]. https://doi.org/10.48550/arXiv.1711.04528. |
[21] | ELSKEN T, METZEN J H, HUTTER F. Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution[EB/OL]. (2018-04-24)[2023-04-20]. https://doi.org/10.48550/arXiv.1804.09081. |
[22] | ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning Transferable Architectures for Scalable Image Recognition[EB/OL]. (2018-04-11)[2023-04-20]. https://doi.org/10.48550/arXiv.1707.07012. |
[23] | REAL E, AGGARWAL A, HUANG Yanping, et al. Regularized Evolution for Image Classifier Architecture Search[EB/OL]. (2018-02-05)[2023-04-20]. https://doi.org/10.48550/arXiv.1802.01548. |
[24] | LIU Chenxi, ZOPH B, SHLENS J, et al. Progressive Neural Architecture Search[EB/OL]. (2017-12-02)[2023-04-20]. https://doi.org/10.48550/arXiv.1712.00559. |
[25] | GUO Ronghao, LIN Chen, LI Chuming, et al. Powering One-Shot Topological NAS with Stabilized Share-Parameter Proxy[C]// Springer. Computer Vision-ECCV 2020. Berlin: Springer, 2020: 625-641. |
[26] | HU Yiming, WANG Xingang, GU Qingyi. PWSNAS: Powering Weight Sharing NAS with General Search Space Shrinking Framework[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 22: 1-14. |
[27] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 2818-2826. |
[28] | LIU Hanxiao, SIMONYAN K, YANG Yiming. Darts: Differentiable Architecture Search[EB/OL]. (2018-06-24)[2023-04-20]. https://doi.org/10.48550/arXiv.1806.09055. |
[29] | PHAM H, GUAN M, ZOPH B, et al. Efficient Neural Architecture Search via Parameters Sharing[C]// PMLR. International Conference on MACHINE Learning. New York: PMLR, 2018: 4095-4104. |
[30] | LIU Hanxiao, SIMONYAN K, VINYALS O, et al. Hierarchical Representations for Efficient Architecture Search[EB/OL]. (2017-11-01)[2023-04-20]. https://doi.org/10.48550/arXiv.1711.00436. |
[31] |
FLOREANO D, DURR P, MATTIUSSI C. Neuroevolution: From Architectures to Learning[J]. Evolutionary Intelligence, 2008, 1(1): 47-62.
doi: 10.1007/s12065-007-0002-4 URL |
[32] |
STANLEY K O, MIIKKULAINEN R. Evolving Neural Networks through Augmenting Topologies[J]. Evolutionary Computation, 2002, 10(2): 99-127.
pmid: 12180173 |
[33] |
STANLEY K, D'AMBROSIO D, GAUCI J. A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks[J]. Artificial Life, 2009, 15(2): 185-212.
doi: 10.1162/artl.2009.15.2.15202 pmid: 19199382 |
[34] | XIE Lingxi, YUILLE A. Genetic CNN[C]// IEEE. 2017 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2017: 2980-2988. |
[35] | SUN Yanan, XUE Bing, ZHANG Mengjie, et al. Completely Automated CNN Architecture Design Based on Blocks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 99: 1-13. |
[36] | CHU Xiangxiang, ZHOU Tianbao, ZHANG Bo, et al. Fair Darts: Eliminating Unfair Advantages in Differentiable Architecture Search[C]// Springer. European Conference on Computer Vision. Berlin:Springer, 2020: 465-480. |
[37] | BAKER B, GUPTA O, NAIK N, et al. Designing Neural Network Architectures Using Reinforcement Learning[EB/OL]. (2016-11-07)[2023-04-20]. https://doi.org/10.48550/arXiv.1611.02167. |
[38] | ZHONG Zhao, YAN Junjie, WU Wei, et al. Practical Block-Wise Neural Network Architecture Generation[C]// IEEE. IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 2423-2432. |
[39] | CHEN Xin, XIE Lingxi, WU Jun, et al. Progressive Differentiable Architecture Search: Bridging the Depth Gap Between Search and Evaluation[C]// IEEE. IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2019: 1294-1303. |
[40] | XU Yuhui, XIE Lingxi, ZHANG Xiaopeng, et al. PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture Search[EB/OL]. (2020-07-12)[2023-04-20]. https://doi.org/10.48550/arXiv.1907.05737. |
[41] | CAI Han, ZHU Ligeng, HAN Song. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware[EB/OL]. (2018-12-02)[2023-04-20]. https://doi.org/10.48550/arXiv.1812.0033. |
[42] | LUO Renqian, TIAN Fei, QIN Tao, et al. Neural Architecture Optimization[C]// ACM. Advances in Neural Information Processing Systems. New York: ACM, 2018: 7816-7827. |
[43] | WU Bichen, DAI Xiaoliang, ZHANG Peizhao, et al. FBNET: Hardware-Aware Efficient Convnet Design via Differentiable Neural Architecture Search[C]// IEEE. IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 10734-10742. |
[44] | LIU Chenxi, CHEN L C, SCHROFF F, et al. Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation[C]// IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 1-12. |
[45] | LIU C, CHEN L C, SCHROFF F, et al. Auto-Deeplab: Hierarchical Neural Architecture Search for Semantic Image Segmentation[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 82-92. |
[46] | YANG Zhaohui, WANG Yunhe, CHEN Xinghao, et al. HourNAS: Extremely Fast Neural Architecture Search through an Hourglass Lens[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 10896-10906. |
[47] |
TAN Hao, CHENG Ran, HUANG Shihua, et al. RelativeNAS: Relative Neural Architecture Search via Slow-Fast Learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(1): 475-489.
doi: 10.1109/TNNLS.2021.3096658 URL |
[48] | YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated Machine Learning: Concept and Applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): 1-19. |
[49] |
ZHU Hangyu, ZHANG Haoyu, JIN Yaochu. From Federated Learning to Federated Neural Architecture Search: A Survey[J]. Complex and Intelligent Systems, 2021, 7: 639-657.
doi: 10.1007/s40747-020-00247-z |
[50] | CAI Han, GAN Chuan, WANG Tianzhe, et al. Once-for-All: Train One Network and Specialize It for Efficient Deployment[EB/OL]. (2019-08-26)[2023-04-20]. https://doi.org/10.48550/arXiv.1908.09791. |
[51] | BAKER B, GUPTA O, RASKAR R, et al. Accelerating Neural Architecture Search Using Performance Prediction[EB/OL]. (2017-05-30)[2023-04-20]. https://doi.org/10.48550/arXiv.1705.10823. |
[52] | KLEIN A, FALKNER S, SPRINGENBERG J T, et al. Learning Curve Prediction with Bayesian Neural Networks[C]// ICLR. International Conference on Learning Representations. New York: ICLR, 2017: 1-16. |
[53] |
HASSANTABAR S, DAI Xiaoliang, JHA N K. CURIOUS: Efficient Neural Architecture Search Based on a Performance Predictor and Evolutionary Search[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(11): 4975-4990.
doi: 10.1109/TCAD.2022.3148202 URL |
[54] | LU Zhichao, DEB K, GOODMAN E, et al. NSGANETV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search[C]// Springer. Computer Vision-ECCV 2020. Berlin: Springer, 2020: 35-51. |
[55] | WEI Chen, NIU Chuang, TANG Yiping, et al. Npenas: Neural Predictor Guided Evolution for Neural Architecture Search[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 22: 1-15. |
[56] | ZHAO Yiyang, WANG Linan, TIAN Yuandong, et al. Few-Shot Neural Architecture Search[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2021: 12707-12718. |
[57] | GUO Zichao, ZHANG Xiangyu, MU Haoyuan, et al. Single Path One-Shot Neural Architecture Search with Uniform Sampling[C]// Springer. Computer Vision-ECCV 2020: 16th European Conference. Berlin: Springer, 2020: 544-560. |
[58] | YOU Shan, HUANG Tao, YANG Mingmin, et al. GreedyNAS: Towards Fast One-Shot NAS with Greedy Supernet[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 1999-2008. |
[59] | SHEN Zan, QIAN Jiang, ZHUANG Bojin, et al. BS-NAS: Broadening-and-Shrinking One-Shot NAS with Searchable Numbers of Channels[EB/OL]. (2020-03-22)[2023-04-20]. https://doi.org/10.48550/arXiv.2003.09821. |
[60] | ZHENG Xiawu, JI Rongrong, WANG Qiang, et al. Rethinking Performance Estimation in Neural Architecture Search[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 11353-11362. |
[61] | HU Yiming, WANG Xingang, LI Lujun, et al. Improving One-Shot NAS with Shrinking-and-Expanding Supernet[J]. Pattern Recognition: The Journal of the Pattern Recognition Society, 2021, 1: 1-12. |
[62] |
ZHANG Miao, LI Huiqi, PAN Shuirui, et al. One-Shot Neural Architecture Search: Maximising Diversity to Overcome Catastrophic Forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(9): 2921-2935.
doi: 10.1109/TPAMI.2020.3035351 URL |
[63] | YING C, KLEIN A, CHRISTIANSEN E, et al. NAS-Bench-101: Towards Reproducible Neural Architecture Search[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2019: 7105-7114. |
[64] | DONG Xuanyi, YANG Yi. NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search[EB/OL]. (2020-01-15)[2023-04-20]. https://doi.org/10.48550/arXiv.2001.00326. |
[65] | SIEMS J, ZIMMER L, ZELA A, et al. NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search[EB/OL]. (2022-04-14)[2023-04-20]. https://doi.org/10.48550/arXiv.2008.09777. |
[66] |
KLYUCHNIKOV N, TROFIMOV I, ARTEMOVA E, et al. NAS-Bench-NLP: Neural Architecture Search Benchmark for Natural Language Processing[J]. IEEE Access, 2022, 10: 45736-45747.
doi: 10.1109/ACCESS.2022.3169897 URL |
[67] | MEHTA Y, WHITE C, ZELA A, et al. NAS-Bench-Suite: NAS Evaluation is (Now) Surprisingly Easy[EB/OL]. (2022-02-11)[2023-04-20]. https://doi.org/10.48550/arXiv.2201.13396. |
[68] | TU R, ROBERTS N, KHODAK M, et al. NAS-Bench-360: Benchmarking Neural Architecture Search on Diverse Tasks[J]. Advances in Neural Information Processing Systems, 2022, 35: 12380-12394. |
[1] | 张国敏, 张少勇, 张津威. 基于PPO算法的攻击路径发现与寻优方法[J]. 信息网络安全, 2023, 23(9): 47-57. |
[2] | 王鹃, 张冲, 龚家新, 李俊娥. 基于机器学习的模糊测试研究综述[J]. 信息网络安全, 2023, 23(8): 1-16. |
[3] | 许春根, 薛少康, 徐磊, 张盼. 基于安全两方计算的高效神经网络推理协议[J]. 信息网络安全, 2023, 23(7): 22-30. |
[4] | 苑文昕, 陈兴蜀, 朱毅, 曾雪梅. 基于深度学习的HTTP负载隐蔽信道检测方法[J]. 信息网络安全, 2023, 23(7): 53-63. |
[5] | 刘宇啸, 陈伟, 张天月, 吴礼发. 基于稀疏自动编码器的可解释性异常流量检测[J]. 信息网络安全, 2023, 23(7): 74-85. |
[6] | 蒋英肇, 陈雷, 闫巧. 基于双通道特征融合的分布式拒绝服务攻击检测算法[J]. 信息网络安全, 2023, 23(7): 86-97. |
[7] | 李志华, 王志豪. 基于LCNN和LSTM混合结构的物联网设备识别方法[J]. 信息网络安全, 2023, 23(6): 43-54. |
[8] | 赵小林, 王琪瑶, 赵斌, 薛静锋. 基于机器学习的匿名流量分类方法研究[J]. 信息网络安全, 2023, 23(5): 1-10. |
[9] | 赵彩丹, 陈璟乾, 吴志强. 基于多通道联合学习的自动调制识别网络[J]. 信息网络安全, 2023, 23(4): 20-29. |
[10] | 谭柳燕, 阮树骅, 杨敏, 陈兴蜀. 基于深度学习的教育数据分类方法[J]. 信息网络安全, 2023, 23(3): 96-102. |
[11] | 徐占洋, 程洛飞, 程建春, 许小龙. 一种使用Bi-ADMM优化深度学习模型的方案[J]. 信息网络安全, 2023, 23(2): 54-63. |
[12] | 陈得鹏, 刘肖, 崔杰, 仲红. 一种基于双阈值函数的成员推理攻击方法[J]. 信息网络安全, 2023, 23(2): 64-75. |
[13] | 胡智杰, 陈兴蜀, 袁道华, 郑涛. 基于改进随机森林的Android广告应用静态检测方法[J]. 信息网络安全, 2023, 23(2): 85-95. |
[14] | 贾凡, 康舒雅, 江为强, 王光涛. 基于NLP及特征融合的漏洞相似性算法评估[J]. 信息网络安全, 2023, 23(1): 18-27. |
[15] | 刘翔宇, 芦天亮, 杜彦辉, 王靖翔. 基于特征选择的物联网轻量级入侵检测方法[J]. 信息网络安全, 2023, 23(1): 66-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||