[1] |
OH J, KIM S, HO N, et al. Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity and Few-Shot Difficulty[J]. Advances in Neural Information Processing Systems, 2022, 35: 2622-2636.
|
[2] |
ZHENG Hao, WANG Runqi, LIU Jianzhuang, et al. Cross-Level Distillation and Feature Denoising for Cross-Domain Few-Shot Classification[EB/OL]. (2023-11-04)[2024-05-30]. https://arxiv.org/abs/2311.02392v1.
|
[3] |
JANG H, LEE H, SHIN J. Unsupervised Meta-Learning via Few-Shot Pseudo-Supervised Contrastive Learning[EB/OL]. (2023-03-02)[2024-05-30]. https://arxiv.org/abs/2303.00996v1.
|
[4] |
MIKOLOV T, CHEN Kai, CORRADO G, et al. Efficient Estimation of Word Representations in Vector Space[EB/OL]. (2013-09-07)[2024-05-30]. https://arxiv.org/abs/1301.3781v3.
|
[5] |
ZHANG Yuntao, GONG Ling, WANG Yongcheng. An Improved TF-IDF Approach for Text Classification[J]. Journal of Zhejiang University Science, 2005, 6(1): 49-55.
|
[6] |
MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed Representations of Words and Phrases and Their Compositionality[EB/OL]. (2013-10-16)[2024-05-30]. https://arxiv.org/abs/1310.4546v1.
|
[7] |
COLLOBERT R, WESTON J, BOTTOU L, et al. Natural Language Processing (Almost) from Scratch[J]. Journal of Machine Learning Research, 2011, 12: 2493-2537.
|
[8] |
LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural Architectures for Named Entity Recognition[EB/OL]. (2016-04-07)[2024-05-30]. https://arxiv.org/abs/1603.01360v3.
|
[9] |
CHIU J P C, NICHOLS E. Named Entity Recognition with Bidirectional LSTM-CNNS[J]. Transactions of the Association for Computational Linguistics, 2016, 4: 357-370.
|
[10] |
HUANG Zhiheng, XU Wei, YU Kai. Bidirectional LSTM-CRF Models for Sequence Tagging[EB/OL]. (2015-08-09)[2024-05-30]. https://arxiv.org/abs/1508.01991v1.
|
[11] |
CUI Leyang, WU Yu, LIU Jian, et al. Template-Based Named Entity Recognition Using BART[EB/OL]. (2021-06-03)[2024-05-30]. https://arxiv.org/abs/2106.01760v1.
|
[12] |
DAS S S S, KATIYAR A, PASSONNEAU R J, et al. CONTaiNER: Few-Shot Named Entity Recognition via Contrastive Learning[EB/OL]. (2021-09-15)[2024-05-30]. https://arxiv.org/abs/2109.07589v2.
|
[13] |
LI Yongqi, YU Yu, QIAN Tieyun. Type-Aware Decomposed Framework for Few-Shot Named Entity Recognition[EB/OL]. (2023-02-13)[2024-05-30]. https://arxiv.org/abs/2302.06397v2.
|
[14] |
SNELL J, SWERSKY K, ZEMEL R S. Prototypical Networks for Few-Shot Learning[EB/OL]. (2017-03-15)[2024-05-30]. https://arxiv.org/abs/1703.05175.
|
[15] |
GUTMANN M, HYVÄRINEN A. Noise-Contrastive Estimation: A New Estimation Principle for Unnormalized Statistical Models[J]. Journal of Machine Learning Research, 2010, 9: 297-304.
|
[16] |
VAN D O A, LI Yazhe, VINYALS O, et al. Representation Learning with Contrastive Predictive Coding[EB/OL]. (2018-07-10)[2024-05-30]. https://arxiv.org/abs/1807.03748v2.
|
[17] |
SRINIVASA R S, CHO J, YANG Chouchang, et al. CWCL: Cross-Modal Transfer with Continuously Weighted Contrastive Loss[EB/OL]. (2023-09-26)[2024-05-30]. https://api.semanticscholar.org/CorpusID:262826006.
|
[18] |
WEISCHEDEL R, PALMER M, MARCUS M, et al. OntoNotes Release 5.0[EB/OL]. (2013-10-16)[2024-05-30]. https://doi.org/10.35111/xmhb-2b84.
|
[19] |
STUBBS A, UZUNER Ö. Annotating Longitudinal Clinical Narratives for De-Identification: The 2014 I2b2/UTHealth Corpus[J]. Journal of Biomedical Informatics, 2015, 58: S20-S29.
|
[20] |
TÄNZER M, RUDER S, REI M. Memorisation Versus Generalisation in Pre-Trained Language Models[EB/OL]. (2021-04-16)[2024-05-30]. https://arxiv.org/abs/2105.00828v2.
|
[21] |
YANG Yi, KATIYAR A. Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning[EB/OL]. (2020-10-06)[2024-05-30]. https://arxiv.org/abs/2010.02405v1.
|
[22] |
MA Tingting, JIANG Huiqiang, WU Qianhui, et al. Decomposed Meta-Learning for Few-Shot Named Entity Recognition[EB/OL]. (2022-04-12)[2024-05-30]. https://arxiv.org/abs/2204.05751v2.
|
[23] |
MA Jie, BALLESTEROS M, DOSS S, et al. Label Semantics for Few Shot Named Entity Recognition[EB/OL]. (2022-04-16)[2024-05-30]. https://arxiv.org/abs/2203.08985v1.
|