Netinfo Security ›› 2024, Vol. 24 ›› Issue (5): 767-777.doi: 10.3969/j.issn.1671-1122.2024.05.010
Previous Articles Next Articles
ZHANG Shuya1,2,3, CHEN Liangguo1,2,3, CHEN Xingshu1,2,3()
Received:
2024-03-01
Online:
2024-05-10
Published:
2024-06-24
Contact:
CHEN Xingshu
E-mail:chenxsh@scu.edu.cn
CLC Number:
ZHANG Shuya, CHEN Liangguo, CHEN Xingshu. An Automatic Discovery Method for Heuristic Log Templates[J]. Netinfo Security, 2024, 24(5): 767-777.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.05.010
Dataset | SLCT | AEL | IPLoM | LKE | LFA | LogSig | SHISO | Log- Cluster | LenMa | Log-Mine | Spell | Drain | MoLFI | KeyParse | Best |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HDFS | 0.545 | 0.998 | 1* | 1* | 0.885 | 0.850 | 0.998 | 0.546 | 0.998 | 0.851 | 1* | 0.998 | 0.998 | 0.999 | 1 |
Hadoop | 0.423 | 0.538 | 0.954 | 0.670 | 0.900 | 0.633 | 0.867 | 0.563 | 0.885 | 0.870 | 0.778 | 0.948 | 0.957* | 0.932 | 0.957 |
Spark | 0.685 | 0.905 | 0.920 | 0.634 | 0.994 | 0.544 | 0.906 | 0.799 | 0.884 | 0.576 | 0.905 | 0.920 | 0.418 | 1* | 1* |
Zookeeper | 0.726 | 0.921 | 0.962 | 0.438 | 0.839 | 0.738 | 0.660 | 0.732 | 0.841 | 0.688 | 0.964 | 0.967 | 0.839 | 0.993* | 0.993 |
OpenStack | 0.867 | 0.758 | 0.871 | 0.787 | 0.200 | 0.200 | 0.722 | 0.696 | 0.743 | 0.743 | 0.764 | 0.733 | 0.213 | 0.887* | 0.887 |
BGL | 0.573 | 0.758 | 0.939 | 0.128 | 0.854 | 0.227 | 0.711 | 0.835 | 0.690 | 0.723 | 0.787 | 0.963 | 0.960* | 0.958 | 0.963 |
HPC | 0.839 | 0.903 | 0.824 | 0.574 | 0.817 | 0.354 | 0.325 | 0.788 | 0.830 | 0.784 | 0.654 | 0.887 | 0.824 | 0.973* | 0.973 |
Thunderb. | 0.882 | 0.941 | 0.663 | 0.813 | 0.649 | 0.694 | 0.576 | 0.599 | 0.943 | 0.919 | 0.844 | 0.955* | 0.646 | 0.938 | 0.955 |
Windows | 0.697 | 0.690 | 0.567 | 0.990 | 0.588 | 0.689 | 0.701 | 0.713 | 0.566 | 0.993 | 0.989 | 0.997 | 0.406 | 0.997* | 0.997 |
Linux | 0.297 | 0.673 | 0.672 | 0.519 | 0.279 | 0.169 | 0.701 | 0.713 | 0.566 | 0.993 | 0.989 | 0.997 | 0.406 | 0.998* | 0.998 |
Mac | 0.558 | 0.764 | 0.673 | 0.369 | 0.599 | 0.478 | 0.595 | 0.604 | 0.698 | 0.872 | 0.757 | 0.787 | 0.636 | 0.911* | 0.911 |
Android | 0.882 | 0.682 | 0.712 | 0.909 | 0.616 | 0.548 | 0.585 | 0.798 | 0.880 | 0.504 | 0.919 | 0.911 | 0.788 | 0.960* | 0.960 |
HealthApp | 0.331 | 0.568 | 0.822 | 0.592 | 0.549 | 0.235 | 0.397 | 0.531 | 0.174 | 0.684 | 0.639 | 0.780 | 0.440 | 0.995* | 0.995 |
Apache | 0.731 | 1* | 1* | 1* | 1* | 0.582 | 1* | 0.709 | 1* | 1* | 1* | 1* | 1* | 1* | 1* |
OpenSSH | 0.521 | 0.538 | 0.802 | 0.426 | 0.501 | 0.373 | 0.619 | 0.426 | 0.925 | 0.431 | 0.554 | 0.788 | 0.500 | 0.971* | 0.971 |
Proxifier | 0.518 | 0.518 | 0.515 | 0.495 | 0.026 | 0.967 | 0.517 | 0.951 | 0.508 | 0.517 | 0.527 | 0.527 | 0.013 | 0.976* | 0.976 |
Average | 0.637 | 0.754 | 0.777 | 0.563 | 0.652 | 0.482 | 0.669 | 0.665 | 0.721 | 0.694 | 0.751 | 0.865 | 0.605 | 0.968 |
[1] | HASSAN W U, NOUREDDINE M A, DATTA P, et al. OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-Layer Log Analysis[C]// NDSS. Internet Society. The 27th Annual Network and Distributed System Security (NDSS) Symposium. New York: NDSS, 2020: 1-12. |
[2] | XU Zhiqiang, FANG Pengcheng, LIU Changlin, et al. Depcomm: Graph Summarization on System Audit Logs for Attack Investigation[C]// IEEE. 43rd IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2022: 540-557. |
[3] | BABENKO A, MARIANI L, PASTORE F. Ava: Automated Interpretation of Dynamically Detected Anomalies[C]// ACM. The 18th International Symposium on Software Testing and Analysis (ISSTA). New York: ACM, 2009: 237-248. |
[4] | CHEN Anran. An Empirical Study on Leveraging Logs for Debugging Production Failures[C]// IEEE. The 41st International Conference on Software Engineering:Companion Proceedings(ICSE-C). New York: IEEE, 2019: 126-128. |
[5] | JIA Tong, CHEN Pengfei, YANG Lin, et al. An Approach for Anomaly Diagnosis Based on Hybrid Graph Model with Logs for Distributed Services[C]// IEEE. 2017 IEEE International Conference on Web Services (ICWS). New York: IEEE, 2017: 25-32. |
[6] | LU Jie, LI Feng, LI Lian, et al. CloudRaid: Detecting Distributed Concurrency Bugs via Log Mining and Enhancement[J]. IEEE Transactions on Software Engineering, 2020, 48(2): 662-677. |
[7] | BREIER, BRANIŠOVÁ J. Anomaly Detection from Log Files Using Data Mining Techniques[C]// ICISA. The 2017 ICISA International Conference on Intelligent Systems and Applications. Berlin:ICISA, 2015: 449-457. |
[8] | NANDI A, MANDAL A, ATREJA S, et al. Anomaly Detection Using Program Control Flow Graph Mining from Execution Logs[C]// ACM. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 215-224. |
[9] | LE V H, ZHANG Hongyu. Log-Based Anomaly Detection without Log Parsing[C]// IEEE. 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). New York: IEEE, 2021: 492-504. |
[10] | LIU Fucheng, WEN Yu, ZHANG Dongxue, et al. Log2vec: A Heterogeneous Graph Embedding Based Approach for Detecting Cyber Threats within Enterprise[C]// ACM. The 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 1777-1794. |
[11] | XIA Bin, BAI Yuxuan, YIN Junjie, et al. LogGAN: A Log-Level Generative Adversarial Network for Anomaly Detection Using Permutation Event Modeling[J]. Information Systems Frontiers, 2021, 23: 285-298. |
[12] | MI Haibo, WANG Huaimin, ZHOU Yangfan, et al. Toward Fine-Grained, Unsupervised, Scalable Performance Diagnosis for Production Cloud Computing Systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(6): 1245-1255. |
[13] | RAMATI R. A Beginners Guide to Logstash Grok[EB/OL]. (2016-07-11)[2023-10-27]. https://logz.io/blog/logstash-grok. |
[14] | ROUILLARD J P. Real-Time Log File Analysis Using the Simple Event Correlator (SEC)[C]//LISA. 2004 LISA. Atlanta: USA 2004: 133-150. |
[15] | Apache. Apache Log4j 2[EB/OL]. (2022-05-18)[2023-10-27]. https://logging.apache.org/log4j/2.x/. |
[16] | XU Wei, HUANG Ling, FOX Armando, et al. Detecting Large-Scale System Problems by Mining Console Logs[C]// ACM. The ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP). New York: ACM, 2009: 117-132. |
[17] | ZHU Jieming, HE Shilin, LIU Jinyang, et al. Tools and Benchmarks for Automated Log Parsing[C]// IEEE. The 41st International Conference on Software Engineering:Software Engineering in Practice(ICSE-SEIP). New York: IEEE, 2019: 121-130. |
[18] | MAKANJU A, ZINCIR-HEYWOOD A N, MILIOS E E. A Lightweight Algorithm for Message Type Extraction in System Application Logs[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 24(11): 1921-1936. |
[19] | RISTO V. A Data Clustering Algorithm for Mining Patterns from Event Logs[C]// IEEE. The 3rd IEEE Workshop on IP Operations & Management. New York: IEEE, 2003: 119-126. |
[20] | NAGAPPAN M, VOUK M A. Abstracting Log Lines to Log Event Types for Mining Software System Logs[C]// IEEE. The 7th International Working Conference on Mining Software Repositories (MSR 2010). New York: IEEE, 2010: 114-117. |
[21] | VAARANDI R, PIHELGAS M. Logcluster-A Data Clustering and Pattern Mining Algorithm for Event Logs[C]// IEEE. 11th International Conference on Network and Service Management (CNSM). New York: IEEE, 2015: 1-7. |
[22] | DAI Hetong, LI Heng, CHEN Cheshao, et al. Logram: Efficient Log Parsing Using N-Gram Dictionaries[J]. IEEE Transactions on Software Engineering, 2020, 48(3): 879-892. |
[23] | FU Qiang, LOU Jianguang, WANG Yi, et al. Execution Anomaly Detection in Distributed Systems through Unstructured Log Analysis[C]// ICDM. The 9th IEEE International Conference on Data Mining. New York: IEEE, 2009: 149-158. |
[24] | HAMOONI H, DEBNATH B, XU Jianwu, et al. LogMine: Fast Pattern Recognition for Log Analytics[C]// ACM. The 25th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2016: 1573-1582. |
[25] | TANG Liang, LI Tao, PERNG Changshing. LogSig: Generating System Events from Raw Textual Logs[C]// ACM. The 20th ACM International Conference on Information and Knowledge Management (CIKM). New York: ACM, 2011: 785-794. |
[26] | MIZUTANI M. Incremental Mining of System Log Format[C]// IEEE. International Conference on Services Computing. New York: IEEE, 2013: 595-602. |
[27] | SHIMA K. Length Matters: Clustering System Log Messages Using Length of Words[EB/OL]. [2024-01-15]. arXiv preprint arXiv: 1611.03213, 2016. |
[28] | JIANG Zhenming, HASSAN A E, FLORA P, et al. Abstracting Execution Logs to Execution Events for Enterprise Applications (Short Paper)[C]// IEEE. The 8th International Conference on Quality Software(QSIC). New York: IEEE, 2008: 181-186. |
[29] | MAKANJU A A O, ZINCIR-HEYWOOD A N, MILIOS E. Clustering Event Logs Using Iterative Partitioning[C]// ACM. The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 1255-1264. |
[30] | HE Pinjia, ZHU Jieming, ZHENG Zibin, et al. Drain: An Online Log Parsing Approach with Fixed Depth Tree[C]// IEEE. International Conference on Web Services(ICWS). New York: IEEE, 2017: 33-40. |
[31] | DU Min, LI Feifei. Spell: Streaming Parsing of System Event Logs[C]// IEEE. 16th International Conference on Data Mining (ICDM). New York: IEEE, 2016: 859-864. |
[32] | LIU Yudong, ZHANG Xu, HE Shilin, et al. Uniparser: A Unified Log Parser for Heterogeneous Log Data[C]// ACM. The ACM Web Conference 2022. New York: ACM, 2022: 1893-1901. |
[33] | WANG Xuheng, ZHANG Xu, LI Liqun, et al. SPINE: A Scalable Log Parser with Feedback Guidance[C]// ACM. The 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering(ESEC/FSE). New York: ACM, 2022: 1198-1208. |
[34] | MENG Weibin, LIU Ying, FEDERICO Zaiter, et al. Logparse: Making Log Parsing Adaptive through Word Classification[C]// IEEE. 29th International Conference on Computer Communications and Networks (ICCCN). New York: IEEE, 2020: 1-9. |
[35] | TAO Shimin, MENG Weibin, CHENG Yimeng, et al. Logstamp: Automatic Online Log Parsing Based on Sequence Labelling[J]. ACM SIGMETRICS Performance Evaluation Review, 2022, 49(4): 93-98. |
[36] | HE Pinjia, ZHU Jieming, HE Shilin, et al. Towards Automated Log Parsing for Large-Scale Log Data Analysis[J]. IEEE Transactions on Dependable and Secure Computing, 2017, 15(6): 931-944. |
[37] | HE Pinjia, ZHU Jieming, HE Shilin, et al. An Evaluation Study on Log Parsing and Its Use in Log Mining[C]// IEEE. The 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). New York: IEEE, 2016: 654-661. |
[38] | YANG Tong, GONG Junzhi, ZHANG Haowei, et al. Heavyguardian: Separate and Guard Hot Items in Data Streams[C]// ACM. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 2584-2593. |
[39] | MESSAOUDI S, PANICHELLA A, BIANCULLI D, et al. A Search-Based Approach for Accurate Identification of Log Message Formats[C]// IEEE. The 26th International Conference on Program Comprehension (ICPC). New York: IEEE, 2018: 167-177. |
[1] | WEN Weiping, ZHANG Shichen, WANG Han, SHI Lin. Linux Malicious Application Detection Scheme Based on Virtual Machine Introspection [J]. Netinfo Security, 2024, 24(5): 657-666. |
[2] | LI Zhihua, CHEN Liang, LU Xulin, FANG Zhaohui, QIAN Junhao. Lightweight Detection Method for IoT Mirai Botnet [J]. Netinfo Security, 2024, 24(5): 667-681. |
[3] | YANG Zhipeng, WANG Juan, MA Chenjun, KANG Yunfeng. Python Sandbox Escape Defense Mechanism Based on Third-Party Library Isolation [J]. Netinfo Security, 2024, 24(5): 682-693. |
[4] | GU Guomin, CHEN Wenhao, HUANG Weida. A Covert Tunnel and Encrypted Malicious Traffic Detection Method Based on Multi-Model Fusion [J]. Netinfo Security, 2024, 24(5): 694-708. |
[5] | SHEN Zhuowei, WANG Renbo, SUN Xianjun. A Hierarchical Lightweight Authentication Scheme Based on Merkle Tree and Hash Chain [J]. Netinfo Security, 2024, 24(5): 709-718. |
[6] | TIAN Zhao, NIU Yajie, SHE Wei, LIU Wei. A Reputation Evaluation Method for Vehicle Nodes in V2X [J]. Netinfo Security, 2024, 24(5): 719-731. |
[7] | SHI Runhua, DENG Jiapeng, YU Hui, KE Weiyang. Electronic Voting Scheme Based on Public Key Cryptography of Quantum Walks [J]. Netinfo Security, 2024, 24(5): 732-744. |
[8] | GUO Jiansheng, GUAN Feiting, LI Zhihui. A Dynamic (t,n) Threshold Quantum Secret Sharing Scheme with Cheating Identification [J]. Netinfo Security, 2024, 24(5): 745-755. |
[9] | LI Yuxin, HUANG Wenchao, WANG Jionghan, XIONG Yan. Analysis Method of Monero Payment Protocol Based on Tamarin [J]. Netinfo Security, 2024, 24(5): 756-766. |
[10] | ZHANG Changlin, TONG Xin, TONG Hui, YANG Ying. A Survey of Large Language Models in the Domain of Cybersecurity [J]. Netinfo Security, 2024, 24(5): 778-793. |
[11] | WANG Wei, HU Yongtao, LIU Qingtao, WANG Kailun. Research on Softwaization Techniques for ERT Trusted Root Entity in Railway Operation Environment [J]. Netinfo Security, 2024, 24(5): 794-801. |
[12] | GUO Zimeng, ZHU Guangjie, YANG Yijie, SI Qun. Research on Railway Network Security Performance Based on APT Characteristics [J]. Netinfo Security, 2024, 24(5): 802-811. |
[13] | ZHANG Hao, XIE Dazhi, HU Yunsheng, YE Junwei. A Review of Network Anomaly Detection Based on Semi-Supervised Learning [J]. Netinfo Security, 2024, 24(4): 491-508. |
[14] | WANG Jian, CHEN Lin, WANG Kailun, LIU Jiqiang. Application Layer DDoS Detection Method Based on Spatio-Temporal Graph Neural Network [J]. Netinfo Security, 2024, 24(4): 509-519. |
[15] | TU Xiaohan, ZHANG Chuanhao, LIU Mengran. Design and Implementation of Malicious Traffic Detection Model [J]. Netinfo Security, 2024, 24(4): 520-533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||