[1] |
KUMAR N, SINGH A, SHUKLA S K. Detecting Malicious Accounts on the Ethereum Blockchain with Supervised Learning[C]// Springer. Cyber Security Cryptography and Machine Learning- Fourth International Symposium. Heidelberg: Springer, 2020: 94-109.
|
[2] |
BARTOLETTI M, LANDE S, POMPIANU L, et al. A General Framework for Blockchain Analytics[C]// ACM. The 1st Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers. New York: ACM, 2017: 1-6.
|
[3] |
KHALILOV M C K, LEVI A. A Survey on Anonymity and Privacy in Bitcoin-Like Digital Cash Systems[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2543-2585.
|
[4] |
JIA Jinyuan, SALEM A, BACKES M, et al. Memguard: Defending Against Black-Box Membership Inference Attacks via Adversarial Examples[C]// ACM.The 26th ACM Conference on Computer and Communications Security (CCS 2019). New York: ACM, 2019: 259-274.
|
[5] |
TRAMER F, ZHANG Fan, JUELS A, et al. Stealing Machine Learning Models via Prediction Apis[C]// USENIX. 25th USENIX Security Symposium 2016. Berkeley: USENIX, 2016: 601-618.
|
[6] |
HIRSHMAN J, HUANG Yifei, MACKE S. Unsupervised Approaches to Detecting Anomalous Behavior in the Bitcoin Transaction Network[EB/OL]. (2013-09-23) [2023-08-01]. https://cs229.stanford.edu/proj2013/HirshmanHuangMacke-UnsupervisedApproachesToDetectingAnomalousBehaviorInTheBitcoinTransactionNetwork.pdf.
|
[7] |
PHAM T, LEE S. Anomaly Detection in Bitcoin Network Using Unsupervised Learning Methods[EB/OL].(2016-11-12) [2023-08-01]. http://arxiv.org/abs/1611.03941.
|
[8] |
PHAM T, LEE S. Anomaly Detection in the Bitcoin System-A Network Perspective[EB/OL]. (2016-11-13) [2023-08-01]. http://arxiv.org/abs/1611.03942.
|
[9] |
MONAMO P M, MARIVATE V, TWALA B. A Multifaceted Approach to Bitcoin Fraud Detection: Global and Local Outliers[C]// IEEE. The 15th IEEE International Conference on Machine Learning and Applications. New York: IEEE, 2016: 188-194.
|
[10] |
AWAN M K, CORTESI A. Blockchain Transaction Analysis Using Dominant Sets[C]// Springer. The 16th IFIP TC8 International Conference. Heidelberg: Springer, 2017: 229-239.
|
[11] |
KIM J, NAKASHIMA M, FAN Wenjun, et al. Anomaly Detection Based on Traffic Monitoring for Secure Blockchain Networking[C]// IEEE. IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2021). New York: IEEE, 2021: 1-9.
|
[12] |
SONG Yuhan, WEI Fushan, ZHU Kaijie, et al. Anomaly Detection as a Service: An Outsourced Anomaly Detection Scheme for Blockchain in a Privacy Preserving Manner[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 3794-3809.
doi: 10.1109/TNSM.2022.3215006
URL
|
[13] |
LI Qinbin, WU Zhaomin, WEN Zeyi, et al. Privacy-Preserving Gradient Boosting Decision Trees[EB/OL]. (2020-10-29) [2023-08-01]. https://arxiv.org/abs/1911.04209.
|
[14] |
YANG Mengwei, SONG Linqi, XU Jie, et al. The Tradeoff Between Privacy and Accuracy in Anomaly Detection Using Federated XGBoost[EB/OL]. (2019-10-14) [2023-08-01]. https://arxiv.org/abs/1907.07157.
|
[15] |
CHENG Kewei, FAN Tao, JIN Yilun, et al. SecureBoost: A Lossless Federated Learning Framework[EB/OL].(2021-04-07) [2023-08-01]. https://arxiv.org/abs/1901.08755.
|
[16] |
CHEN Weijing, MA Guoqiang, FAN Tao, et al. SecureBoost+: A High Performance Gradient Boosting Tree Framework for Large Scale Vertical Federated Learning[EB/OL]. (2021-12-23) [2023-08-01]. https://arxiv.org/abs/2110.10927.
|
[17] |
FREUND Y, SCHAPIRE R E. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
doi: 10.1006/jcss.1997.1504
URL
|
[18] |
MIVULE K, TURNER C, JI S. Towards A Differential Privacy and Utility Preserving Machine Learning Classifier[C]// Elsevier. The Complex Adaptive Systems 2012 Conference. Amsterdam: Elsevier, 2012: 176-181.
|
[19] |
SHEN Siqian. Research on Differential Privacy Protection Classification Algorithm[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
|
|
沈思倩. 关于差分隐私保护分类算法的研究[D]. 南京: 南京航空航天大学, 2017.
|
[20] |
MA Zhuo, LIU Yang, LIU Ximeng, et al. Lightweight Privacy-Preserving Ensemble Classification for Face Recognition[J]. IEEE Internet of Things Journal, 2019, 6(3): 5778-5790.
doi: 10.1109/JIOT.2019.2905555
|
[21] |
DAVOUDI M. Efficient and Privacy-Preserving Adaboost Classification Framework for Mining Healthcare Data over Outsourced Cloud[D]. New Jersey: University of New Brunswick, 2020.
|
[22] |
PAILLIER P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[C]// Springer. EUROCRYPT’ 99. Heidelberg:Springer, 1999: 223-238.
|
[23] |
CHEN Binjie. Research on Blockchain Abnormal Transaction Detection for Privacy Protection[D]. Zhengzhou: Information Engineering University of PLA, 2022.
|
|
陈彬杰. 隐私保护的区块链异常交易检测研究[D]. 郑州: 战略支援部队信息工程大学, 2022.
|