Netinfo Security ›› 2024, Vol. 24 ›› Issue (1): 150-159.doi: 10.3969/j.issn.1671-1122.2024.01.015
Previous Articles Next Articles
WANG Junyan1, YI Peng2, JIA Hongyong1(
), ZHANG Jianhui1,3
Received:2023-08-12
Online:2024-01-10
Published:2024-01-24
Contact:
JIA Hongyong
E-mail:hyjia@zzu.edu.cn
CLC Number:
WANG Junyan, YI Peng, JIA Hongyong, ZHANG Jianhui. IoT Terminal Risk Assessment Model Based on Improved CAE[J]. Netinfo Security, 2024, 24(1): 150-159.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.01.015
| 数据来源 | 数据 | 统计量 | 总数/个 |
|---|---|---|---|
| Source IP | Packet size(only outbound) | Mean, variance | 3 |
| Packet count(only outbound) | Integer | ||
| Source MAC-IP | Packet size(only outbound) | Mean, variance | 3 |
| Packet count | Integer | ||
| Channel | Packet size(only outbound) | Mean, variance | 10 |
| Packet count | Integer | ||
| Amount of time betweenpacket arrivals | Mean, variance, | ||
| Packet size(both inbound and outbound) | Magnitude, radius, covariance, correlation coefficient | ||
| Socket | Packet size(only outbound) | Mean, variance | 7 |
| Packet count | Integer | ||
| Packet size(both inbound and outbound) | Magnitude, radius, covariance, correlation coefficient |
| 层 | 各层输出大小 | 参数量/个 |
|---|---|---|
| Input1 | (115,0) | 0 |
| DephwiseConv1D | (115,1) | 129 |
| SeparableConv1D | (115,32) | 96 |
| GlobalAveragePooling1D | (None,32) | 0 |
| Deconv1DTranspose | (115,32) | 2080 |
| Deconv1DTranspose | (115,64) | 4160 |
| Deconv1DTranspose | (115,115) | 14835 |
| Flatten | (None,32) | 0 |
| Dense | (None,115) | 3795 |
| Dense | (None,64) | 7424 |
| Dense | (None,32) | 2080 |
| Dense | (None,1) | 33 |
| 合计 | — | 34632 |
| 层 | 参数设置 |
|---|---|
| DephwiseConv1D | Kernel_size:2,num_filters:64,activation:relu,padding: same |
| SeparableConv1D | Kernel_size:2,num_filters:32, activation:relu,padding: same |
| GlobalAveragePooling1D | data_format=channels_last |
| Conv1DTranspose | filters=32, kernel_size=2, activation=relu padding=same, |
| Conv1DTranspose | filters=64, kernel_size=2, activation=relupadding=same, |
| Conv1DTranspose | filters=115, kernel_size=2, padding=same, activation=linear |
| Dense | activation=relu |
| Dense | activation=relu |
| Dense | activation=relu |
| Dense | activation=sigmoid |
| epoch | 200 |
| batch_size | 100 |
| 层 | 各层输出大小 | 参数/个 |
|---|---|---|
| Input1 | (115,0) | 0 |
| Conv1D | (115,64) | 14784 |
| MaxPooling1D | (57, 64) | 0 |
| Conv1D | (57, 32) | 4128 |
| MaxPooling1D | (28, 32) | 0 |
| Deconv1D | (28, 32) | 2080 |
| UpSampling1D | (57, 32) | 0 |
| Deconv1D | (57,64) | 4160 |
| UpSampling1D | (115,64) | 0 |
| Deconv1D | (115,115) | 14755 |
| Flatten | (None,32) | 0 |
| Dense | (115,0) | 1539115 |
| Dense | (None,64) | 741504 |
| Dense | (None,32) | 2080 |
| Dense | (None,1) | 33 |
| 合计 | — | 2322639 |
| [1] | LIN Meiyu, WANG Yazhong. Research on Security Capability of IoT Terminal[J]. Information and Communication Technology and Policy, 2020, (10): 93-96. |
| 林美玉, 王亚忠. 物联网终端安全能力研究[J]. 信息通信技术与政策, 2020, (10): 93-96. | |
| [2] | CHEN Lin, CUI Tao. Research on Terminal Security in Massive Machine Communication Scenarios[J]. Information and Communication Technology and Policy, 2021, (12): 93-96. |
| 陈琳, 崔涛. 海量机器类通信场景终端安全问题研究[J]. 信息通信技术与政策, 2021, (12): 93-96. | |
| [3] |
MARUDHADEVI D, DHATCHAYANI V N, SRIRAM V S S. A Trust Evaluation Model for Cloud Computing Using Service Level Agreement[J]. The Computer Journal, 2014, 58(10): 2225-2232.
doi: 10.1093/comjnl/bxu129 URL |
| [4] | JOSANG A. Subjective Logic: A Formalism for Reasoning Under Uncertainty[M]. Springer: Nature, 2016. |
| [5] | FENG Jingyu, YU Tingting, WANG Ziying, et al. Edge Zero Trust Model Against Lost Terminal Threat in Power Iot Scenario[J]. Journal of Computer Research and Development, 2022, 59(5): 1120-1132. |
| 冯景瑜, 于婷婷, 王梓莹, 等. 电力物联场景下抗失陷终端威胁的边缘零信任模型[J]. 计算机研究与发展, 2022, 59(5): 1120-1132. | |
| [6] | WANG Jingwen, JING Xuyang, YAN Zhengyan, et al. A Survey on Trust Evaluation Based on Machine Learning[J]. ACM Computing Surveys, 2020, 53(5): 1-36. |
| [7] | ALHANDI S A, KAMALUDIN H, ALDUAIS N A M. Trust Evaluation Model in IoT Environment: A Comprehensive Survey[J]. IEEE Access, 2023: 11165-11182 |
| [8] | TANG Xianzhi, DING Chunyan. Information Security Terminal Architecture of Power Transportation Mobile Internet of Things Based on Big Data Analysis[J]. Wireless Communications and Mobile Computing, 2021, 2021: 1-9. |
| [9] | ZHAO Yifan. Application of Machine Learning in Network Security Situational Awareness[C]// IEEE.2021 World Conference on Computing and Communication Technologies. New York: IEEE, 2021: 39-46. |
| [10] |
ABBASI M, SHAHRAKI A, TAHERKORDI A. Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey[J]. Computer Communications, 2021, 170: 19-41.
doi: 10.1016/j.comcom.2021.01.021 URL |
| [11] | LI Da, FUXingzhen, ZANYanzhu. MPTEM: A Reliable Trust Evaluation Model for Forest IoT System[C]/IEEE. 2022 7th International Conference on Computer and Communication Systems. New York: IEEE, 2022: 690-694. |
| [12] | BERGAMASCO L, SAHA S, BOVOLO F, et al. Unsupervised Change-Detection Based on Convolutional-Autoencoder Feature Extraction[C]// SPIE. 2019, Image and Signal Processing for Remote Sensing XXV. Edinburgh: SPIE, 2019: 352-332. |
| [13] |
JAYASINGHE U, LEE G M, UM T-W, et al. Machine Learning Based Trust Computational Model for IoT Services[J]. IEEE Transactions on Sustainable Computing, 2019, 4(1): 39-52.
doi: 10.1109/TSUSC.2018.2839623 URL |
| [14] | HE Chaoxun, PENG Weifeng, LI Yanfei, et al. Improved on Service Trust Model Based on Machine Learning[J]. Computer Engineering and Design, 2022(5): 1335-1343. |
| 何超勋, 彭伟锋, 李燕飞, 等. 基于机器学习的改进型物联网服务信任模型[J]. 计算机工程与设计, 2022(5): 1335-1343. | |
| [15] | LIAO Junkai, CHENG Yongxin, ZHANG Jianhui. Construction of Access Control System Based on Dynamic Trust[J]. Communications Technology, 2022(4): 473-479. |
| 廖竣锴, 程永新, 张建辉. 基于动态信任的接入管控体系构建[J]. 通信技术, 2022(4): 473-479. | |
| [16] |
LIU Liang, XU Xiangyu, LIU Yulei, et al. A Detection Framework Against CPMA Attack Based on Trust Evaluation and Machine Learning in IoT Network[J]. IEEE Internet of Things Journal, 2021, 8(20): 15249-15258.
doi: 10.1109/JIOT.2020.3047642 URL |
| [17] | KHAN M A, ALGHAMDI N S. A Neutrosophic WPM-Based Machine Learning Model for Device Trust in Industrial Internet of Things[J]. Journal of Ambient Intelligence and Humanized Computing, 2023: 3003-3017 |
| [18] | FRAGKOS G, JOHNSON J, TSIROPOULOU E. Dynamic Role-Based Access Control Policy for Smart Grid Applications: An Offline Deep Reinforcement Learning Approach[J]. IEEE Transactions on Human-Machine Systems, 2022: 1-13. |
| [19] |
ALGHOFAILI Y, RASSAM M A. A Trust Management Model for IoT Devices and Services Based on the Multi-Criteria Decision-Making Approach and Deep Long Short-Term Memory Technique[J]. Sensors, 2022, 22(2): 634-660.
doi: 10.3390/s22020634 URL |
| [20] |
MA Wei, WANG Xing, HU Mingsheng, et al. Machine Learning Empowered Trust Evaluation Method for IoT Devices[J]. IEEE Access, 2021, 9: 65066-65077.
doi: 10.1109/ACCESS.2021.3076118 URL |
| [21] |
RAO M, CHAUDHARY P, SHEORAN K, et al. A Secure Routing Protocol Using Hybrid Deep Regression Based Trust Evaluation and Clustering for Mobile Ad-Hoc Network[J]. Peer-to-Peer Networking and Applications, 2023, 16(6): 2794-2810.
doi: 10.1007/s12083-023-01560-3 |
| [22] |
MEIDAN Y, BOHADANA M, MATHOV Y, et al. N-Baiot—Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders[J]. IEEE Pervasive Computing, 2018, 17(3): 12-22.
doi: 10.1109/MPRV.2018.03367731 URL |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||