Netinfo Security ›› 2023, Vol. 23 ›› Issue (9): 58-74.doi: 10.3969/j.issn.1671-1122.2023.09.006
Previous Articles Next Articles
Received:
2023-04-28
Online:
2023-09-10
Published:
2023-09-18
Contact:
XUE Yu
E-mail:xueyu@nuist.edu.cn
CLC Number:
XUE Yu, ZHANG Yixuan. Survey on Deep Neural Architecture Search[J]. Netinfo Security, 2023, 23(9): 58-74.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.09.006
[1] | ZOPH B, LE Q V. Neural Architecture Search with Reinforcement Learning[EB/OL]. (2016-11-05)[2023-04-20]. https://doi.org/10.48550/arXiv.1611.01578. |
[2] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[EB/OL]. (2014-09-04)[2023-04-20]. https://doi.org/10.48550/arXiv.1409.1556. |
[3] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep Residual Learning for Image Recognition[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). New York: IEEE, 2016: 770-778. |
[4] | HUANG Guo, LIU Zhuang, VAN D M L, et al. Densely Connected Convolutional Networks[C]// IEEE. IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 4700-4708. |
[5] | HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL]. (2017-04-17)[2023-04-20]. https://doi.org/10.48550/arXiv.1704.0486. |
[6] | CHU Xiangxiang, ZHANG Bo, XU Ruijun. FairNAS: Rethinking Evaluation Fairness of Weight Sharing Neural Architecture Search[C]// IEEE. IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2021: 12239-12248. |
[7] |
TIAN Shuo, HU Kai, GUO Shasha, et al. Evolutionary Recurrent Neural Architecture Search[J]. IEEE Embedded Systems Letters, 2020, 13(3): 110-113.
doi: 10.1109/LES.2020.3005753 URL |
[8] | BENDER G, KINDERMANS P J, ZOPH B, et al. Understanding and Simplifying One-Shot Architecture Search[C]// PMLR. International Conference On Machine Learning. New York: PMLR, 2018: 550-559. |
[9] | LU Zhichao, WHALEN I, BODDETI V, et al. NSGA-Net: Neural Architecture Search Using Multi-Objective Genetic Algorithm[C]// ACM. Genetic and Evolutionary Computation Conference. New York: ACM, 2019: 419-427. |
[10] | MICHEL G, ALAOUI M A, LEBOIS A, et al. Dvolver: Efficient Pareto-Optimal Neural Network Architecture Search[EB/OL]. (2019-02-05)[2023-04-20]. https://doi.org/10.48550/arXiv.1902.01654. |
[11] | YANG Zhaohui, WANG Yunhe, CHEN Xinghao, et al. CARS: Continuous Evolution for Efficient Neural Architecture Search[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 1829-1838. |
[12] |
WANG E K, XU S P, CHEN C M, et al. Neural-Architecture-Search-Based Multiobjective Cognitive Automation System[J]. IEEE Systems Journal, 2020, 15(2): 2918-2925.
doi: 10.1109/JSYST.2020.3002428 URL |
[13] | WANG Zhehui, LUO Tao, LI Miqing, et al. Evolutionary Multi-Objective Model Compression for Deep Neural Networks[J]. IEEE Computational Intelligence Magazine, 2021, 16(3): 10-21. |
[14] | CHU Xiangxiang, ZHANG Bo, XU Ruijun. Multi-Objective Reinforced Evolution in Mobile Neural Architecture Search[C]// Springer. Computer Vision-ECCV 2020 Workshops. Berlin: Springer, 2021: 99-113. |
[15] | CAI Han, CHEN Tianyao, ZHANG Weinan, et al. Efficient Architecture Search by Network Transformation[C]// AAAI. AAAI Conference on Artificial Intelligence. Menlo: AAAI, 2018: 1-8. |
[16] | SUGANUMA M, SHIRAKAWA S, NAGAO T. A Genetic Programming Approach to Designing Convolutional Neural Network Architectures[C]// CoNLL. Genetic and Evolutionary Computation Conference. New York: CoNLL, 2017: 497-504. |
[17] | MENDOZA H, KLEIN A, FEURER M, et al. Towards Automatically-Tuned Neural Networks[C]// PMLR. Workshop on Automatic Machine Learning. New York: PMLR, 2016: 58-65. |
[18] | BROCK A, LIM T, RITCHIE J M, et al. SMASH: One-Shot Model Architecture Search through Hypernetworks[EB/OL]. (2017-08-17)[2023-04-20]. https://doi.org/10.48550/arXiv.1708.05344. |
[19] | CAI Han, YANG Jiacheng, ZHANG Weinan, et al. Path-Level Network Transformation for Efficient Architecture Search[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2018: 678-687. |
[20] | ELSKEN T, METZEN J H, HUTTER F. Simple and Efficient Architecture Search for Convolutional Neural Networks[EB/OL]. (2017-11-13)[2023-04-20]. https://doi.org/10.48550/arXiv.1711.04528. |
[21] | ELSKEN T, METZEN J H, HUTTER F. Efficient Multi-Objective Neural Architecture Search via Lamarckian Evolution[EB/OL]. (2018-04-24)[2023-04-20]. https://doi.org/10.48550/arXiv.1804.09081. |
[22] | ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning Transferable Architectures for Scalable Image Recognition[EB/OL]. (2018-04-11)[2023-04-20]. https://doi.org/10.48550/arXiv.1707.07012. |
[23] | REAL E, AGGARWAL A, HUANG Yanping, et al. Regularized Evolution for Image Classifier Architecture Search[EB/OL]. (2018-02-05)[2023-04-20]. https://doi.org/10.48550/arXiv.1802.01548. |
[24] | LIU Chenxi, ZOPH B, SHLENS J, et al. Progressive Neural Architecture Search[EB/OL]. (2017-12-02)[2023-04-20]. https://doi.org/10.48550/arXiv.1712.00559. |
[25] | GUO Ronghao, LIN Chen, LI Chuming, et al. Powering One-Shot Topological NAS with Stabilized Share-Parameter Proxy[C]// Springer. Computer Vision-ECCV 2020. Berlin: Springer, 2020: 625-641. |
[26] | HU Yiming, WANG Xingang, GU Qingyi. PWSNAS: Powering Weight Sharing NAS with General Search Space Shrinking Framework[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 22: 1-14. |
[27] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 2818-2826. |
[28] | LIU Hanxiao, SIMONYAN K, YANG Yiming. Darts: Differentiable Architecture Search[EB/OL]. (2018-06-24)[2023-04-20]. https://doi.org/10.48550/arXiv.1806.09055. |
[29] | PHAM H, GUAN M, ZOPH B, et al. Efficient Neural Architecture Search via Parameters Sharing[C]// PMLR. International Conference on MACHINE Learning. New York: PMLR, 2018: 4095-4104. |
[30] | LIU Hanxiao, SIMONYAN K, VINYALS O, et al. Hierarchical Representations for Efficient Architecture Search[EB/OL]. (2017-11-01)[2023-04-20]. https://doi.org/10.48550/arXiv.1711.00436. |
[31] |
FLOREANO D, DURR P, MATTIUSSI C. Neuroevolution: From Architectures to Learning[J]. Evolutionary Intelligence, 2008, 1(1): 47-62.
doi: 10.1007/s12065-007-0002-4 URL |
[32] |
STANLEY K O, MIIKKULAINEN R. Evolving Neural Networks through Augmenting Topologies[J]. Evolutionary Computation, 2002, 10(2): 99-127.
pmid: 12180173 |
[33] |
STANLEY K, D'AMBROSIO D, GAUCI J. A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks[J]. Artificial Life, 2009, 15(2): 185-212.
doi: 10.1162/artl.2009.15.2.15202 pmid: 19199382 |
[34] | XIE Lingxi, YUILLE A. Genetic CNN[C]// IEEE. 2017 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2017: 2980-2988. |
[35] | SUN Yanan, XUE Bing, ZHANG Mengjie, et al. Completely Automated CNN Architecture Design Based on Blocks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 99: 1-13. |
[36] | CHU Xiangxiang, ZHOU Tianbao, ZHANG Bo, et al. Fair Darts: Eliminating Unfair Advantages in Differentiable Architecture Search[C]// Springer. European Conference on Computer Vision. Berlin:Springer, 2020: 465-480. |
[37] | BAKER B, GUPTA O, NAIK N, et al. Designing Neural Network Architectures Using Reinforcement Learning[EB/OL]. (2016-11-07)[2023-04-20]. https://doi.org/10.48550/arXiv.1611.02167. |
[38] | ZHONG Zhao, YAN Junjie, WU Wei, et al. Practical Block-Wise Neural Network Architecture Generation[C]// IEEE. IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 2423-2432. |
[39] | CHEN Xin, XIE Lingxi, WU Jun, et al. Progressive Differentiable Architecture Search: Bridging the Depth Gap Between Search and Evaluation[C]// IEEE. IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2019: 1294-1303. |
[40] | XU Yuhui, XIE Lingxi, ZHANG Xiaopeng, et al. PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture Search[EB/OL]. (2020-07-12)[2023-04-20]. https://doi.org/10.48550/arXiv.1907.05737. |
[41] | CAI Han, ZHU Ligeng, HAN Song. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware[EB/OL]. (2018-12-02)[2023-04-20]. https://doi.org/10.48550/arXiv.1812.0033. |
[42] | LUO Renqian, TIAN Fei, QIN Tao, et al. Neural Architecture Optimization[C]// ACM. Advances in Neural Information Processing Systems. New York: ACM, 2018: 7816-7827. |
[43] | WU Bichen, DAI Xiaoliang, ZHANG Peizhao, et al. FBNET: Hardware-Aware Efficient Convnet Design via Differentiable Neural Architecture Search[C]// IEEE. IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 10734-10742. |
[44] | LIU Chenxi, CHEN L C, SCHROFF F, et al. Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation[C]// IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 1-12. |
[45] | LIU C, CHEN L C, SCHROFF F, et al. Auto-Deeplab: Hierarchical Neural Architecture Search for Semantic Image Segmentation[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 82-92. |
[46] | YANG Zhaohui, WANG Yunhe, CHEN Xinghao, et al. HourNAS: Extremely Fast Neural Architecture Search through an Hourglass Lens[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 10896-10906. |
[47] |
TAN Hao, CHENG Ran, HUANG Shihua, et al. RelativeNAS: Relative Neural Architecture Search via Slow-Fast Learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(1): 475-489.
doi: 10.1109/TNNLS.2021.3096658 URL |
[48] | YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated Machine Learning: Concept and Applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): 1-19. |
[49] |
ZHU Hangyu, ZHANG Haoyu, JIN Yaochu. From Federated Learning to Federated Neural Architecture Search: A Survey[J]. Complex and Intelligent Systems, 2021, 7: 639-657.
doi: 10.1007/s40747-020-00247-z |
[50] | CAI Han, GAN Chuan, WANG Tianzhe, et al. Once-for-All: Train One Network and Specialize It for Efficient Deployment[EB/OL]. (2019-08-26)[2023-04-20]. https://doi.org/10.48550/arXiv.1908.09791. |
[51] | BAKER B, GUPTA O, RASKAR R, et al. Accelerating Neural Architecture Search Using Performance Prediction[EB/OL]. (2017-05-30)[2023-04-20]. https://doi.org/10.48550/arXiv.1705.10823. |
[52] | KLEIN A, FALKNER S, SPRINGENBERG J T, et al. Learning Curve Prediction with Bayesian Neural Networks[C]// ICLR. International Conference on Learning Representations. New York: ICLR, 2017: 1-16. |
[53] |
HASSANTABAR S, DAI Xiaoliang, JHA N K. CURIOUS: Efficient Neural Architecture Search Based on a Performance Predictor and Evolutionary Search[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(11): 4975-4990.
doi: 10.1109/TCAD.2022.3148202 URL |
[54] | LU Zhichao, DEB K, GOODMAN E, et al. NSGANETV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search[C]// Springer. Computer Vision-ECCV 2020. Berlin: Springer, 2020: 35-51. |
[55] | WEI Chen, NIU Chuang, TANG Yiping, et al. Npenas: Neural Predictor Guided Evolution for Neural Architecture Search[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 22: 1-15. |
[56] | ZHAO Yiyang, WANG Linan, TIAN Yuandong, et al. Few-Shot Neural Architecture Search[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2021: 12707-12718. |
[57] | GUO Zichao, ZHANG Xiangyu, MU Haoyuan, et al. Single Path One-Shot Neural Architecture Search with Uniform Sampling[C]// Springer. Computer Vision-ECCV 2020: 16th European Conference. Berlin: Springer, 2020: 544-560. |
[58] | YOU Shan, HUANG Tao, YANG Mingmin, et al. GreedyNAS: Towards Fast One-Shot NAS with Greedy Supernet[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 1999-2008. |
[59] | SHEN Zan, QIAN Jiang, ZHUANG Bojin, et al. BS-NAS: Broadening-and-Shrinking One-Shot NAS with Searchable Numbers of Channels[EB/OL]. (2020-03-22)[2023-04-20]. https://doi.org/10.48550/arXiv.2003.09821. |
[60] | ZHENG Xiawu, JI Rongrong, WANG Qiang, et al. Rethinking Performance Estimation in Neural Architecture Search[C]// IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 11353-11362. |
[61] | HU Yiming, WANG Xingang, LI Lujun, et al. Improving One-Shot NAS with Shrinking-and-Expanding Supernet[J]. Pattern Recognition: The Journal of the Pattern Recognition Society, 2021, 1: 1-12. |
[62] |
ZHANG Miao, LI Huiqi, PAN Shuirui, et al. One-Shot Neural Architecture Search: Maximising Diversity to Overcome Catastrophic Forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(9): 2921-2935.
doi: 10.1109/TPAMI.2020.3035351 URL |
[63] | YING C, KLEIN A, CHRISTIANSEN E, et al. NAS-Bench-101: Towards Reproducible Neural Architecture Search[C]// PMLR. International Conference on Machine Learning. New York: PMLR, 2019: 7105-7114. |
[64] | DONG Xuanyi, YANG Yi. NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search[EB/OL]. (2020-01-15)[2023-04-20]. https://doi.org/10.48550/arXiv.2001.00326. |
[65] | SIEMS J, ZIMMER L, ZELA A, et al. NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search[EB/OL]. (2022-04-14)[2023-04-20]. https://doi.org/10.48550/arXiv.2008.09777. |
[66] |
KLYUCHNIKOV N, TROFIMOV I, ARTEMOVA E, et al. NAS-Bench-NLP: Neural Architecture Search Benchmark for Natural Language Processing[J]. IEEE Access, 2022, 10: 45736-45747.
doi: 10.1109/ACCESS.2022.3169897 URL |
[67] | MEHTA Y, WHITE C, ZELA A, et al. NAS-Bench-Suite: NAS Evaluation is (Now) Surprisingly Easy[EB/OL]. (2022-02-11)[2023-04-20]. https://doi.org/10.48550/arXiv.2201.13396. |
[68] | TU R, ROBERTS N, KHODAK M, et al. NAS-Bench-360: Benchmarking Neural Architecture Search on Diverse Tasks[J]. Advances in Neural Information Processing Systems, 2022, 35: 12380-12394. |
[1] | WANG Juan, ZHANG Chong, GONG Jiaxin, LI Jun’e. Review of Fuzzing Based on Machine Learning [J]. Netinfo Security, 2023, 23(8): 1-16. |
[2] | XU Chungen, XUE Shaokang, XU Lei, ZHANG Pan. Efficient Neural Network Inference Protocol Based on Secure Two-Party Computation [J]. Netinfo Security, 2023, 23(7): 22-30. |
[3] | YUAN Wenxin, CHEN Xingshu, ZHU Yi, ZENG Xuemei. HTTP Payload Covert Channel Detection Method Based on Deep Learning [J]. Netinfo Security, 2023, 23(7): 53-63. |
[4] | LIU Yuxiao, CHEN Wei, ZHANG Tianyue, WU Lifa. Explainable Anomaly Traffic Detection Based on Sparse Autoencoders [J]. Netinfo Security, 2023, 23(7): 74-85. |
[5] | JIANG Yingzhao, CHEN Lei, YAN Qiao. Distributed Denial of Service Attack Detection Algorithm Based on Two-Channel Feature Fusion [J]. Netinfo Security, 2023, 23(7): 86-97. |
[6] | ZHAO Xiaolin, WANG Qiyao, ZHAO Bin, XUE Jingfeng. Research on Anonymous Traffic Classification Method Based on Machine Learning [J]. Netinfo Security, 2023, 23(5): 1-10. |
[7] | ZHAO Caidan, CHEN Jingqian, WU Zhiqiang. Automatic Modulation Recognition Algorithm Based on Multi-Channel Joint Learning [J]. Netinfo Security, 2023, 23(4): 20-29. |
[8] | TAN Liuyan, RUAN Shuhua, YANG Min, CHEN Xingshu. Educational Data Classification Based on Deep Learning [J]. Netinfo Security, 2023, 23(3): 96-102. |
[9] | XU Zhanyang, CHENG Luofei, CHENG Jianchun, XU Xiaolong. A Scheme of Optimizing Deep Learning Model Using Bi-ADMM [J]. Netinfo Security, 2023, 23(2): 54-63. |
[10] | CHEN Depeng, LIU Xiao, CUI Jie, ZHONG Hong. Research on Membership Inference Attack Method Based on Double Threshold Function [J]. Netinfo Security, 2023, 23(2): 64-75. |
[11] | HU Zhijie, CHEN Xingshu, YUAN Daohua, ZHENG Tao. Static Detection Method of Android Adware Based on Improved Random Forest Algorithm [J]. Netinfo Security, 2023, 23(2): 85-95. |
[12] | JIA Fan, KANG Shuya, JIANG Weiqiang, WANG Guangtao. Vulnerability Similarity Algorithm Evaluation Based on NLP and Feature Fusion [J]. Netinfo Security, 2023, 23(1): 18-27. |
[13] | LIU Xiangyu, LU Tianliang, DU Yanhui, WANG Jingxiang. Lightweight IoT Intrusion Detection Method Based on Feature Selection [J]. Netinfo Security, 2023, 23(1): 66-72. |
[14] | GAO Bo, CHEN Lin, YAN Yingjian. Research on Side Channel Attack Based on CNN-MGU [J]. Netinfo Security, 2022, 22(8): 55-63. |
[15] | LIU Guangjie, DUAN Kun, ZHAI Jiangtao, QIN Jiayu. Mobile Traffic Application Recognition Based on Multi-Feature Fusion [J]. Netinfo Security, 2022, 22(7): 18-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||