[1] |
BOYD D M, ELLISION N B. Social Network Sites: Definition, History, and Scholarship[J]. Journal of Computer-Mediated Communication, 2007, 13(1): 210-230.
doi: 10.1111/j.1083-6101.2007.00393.x
URL
|
[2] |
WANG Xiang, HE Xiannan, CAO Yixin, et al. KGAT: Knowledge Graph Attention Network for Recommendation[C]// KDD. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: KDD, 2019: 950-958.
|
[3] |
WANG Hongwei, ZHAO Miao, XIE Xing, et al. Knowledge Graph Convolutional Networks for Recommender Systems[C]// ACM. The World Wide Web Conference. New York: ACM, 2019: 3307-3313.
|
[4] |
AHMAD W, AHMAD M. Collecting User Access Patterns for Building User Profiles and Collaborative Filtering[C]// ACM. The 4th International Conference on Intelligent User Interfaces. New York: ACM, 1998: 57-64.
|
[5] |
LOPS P, DE G M, SEMERARO G, et al. A Semantic Content-Based Recommender System Integrating Folksonomies for Personalized Access[J]. Web Personalization in Intelligent Environments, 2009(5): 27-47.
|
[6] |
DE G M, LOPS P, SEMERARO G, et al. Integrating Tags in a Semantic Content-Based Recommender[C]// ACM. The 2008 ACM Conference on Recommender Systems. New York: ACM, 2008: 163-170.
|
[7] |
CANTADOR I, BELLOGIN A, VALLET D. Content-Based Recommendation in Social Tagging Systems[C]// ACM. Proceedings of the Fourth ACM Conference on Recommender Systems. New York: ACM, 2010: 237-240.
|
[8] |
DE G M, LOPS P, MUSTO C, et al. Semantics-Aware Content-Based Recommender Systems[J]. Recommender Systems Handbook, 2015(6): 119-159.
|
[9] |
GABRILOVICH E, MARKOVITCH S. Wikipedia-Based Semantic Interpretation for Natural Language Processing[J]. Journal of Artificial Intelligence Research, 2009, 34: 443-498.
doi: 10.1613/jair.2669
URL
|
[10] |
JOSEPH K, JIANG Hui. Content Based News Recommendation via Shortest Entity Distance Over Knowledge Graphs[C]// ACM. The World Wide Web Conference. New York: ACM, 2019: 690-699.
|
[11] |
ZHAO Guoping, ZHANG Mingyu, LI Yaxian, et al. Pyramid Regional Graph Representation Learning for Content-Based Video Retrieval[J]. Information Processing & Management, 2021, 58(3): 488-501.
|
[12] |
SHI Chuan, HAN Xiaotian, SONG Li, et al. Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(4): 1413-1425.
doi: 10.1109/TKDE.69
URL
|
[13] |
YING R, HE Ruining, CHEN Kaifeng, et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]// ACM. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 974-983.
|
[14] |
WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural Graph Collaborative Filtering[C]// ACM. The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174.
|
[15] |
HE Xiangnan, DENG Kuan, WANG Xiang, et al. Lightgcn: Simplifying and Powering Graph Convolution Network for Recommendation[C]// ACM. The 43rd International ACM SIGIR Conference on Rresearch and Development in Information Retrieval. New York: ACM, 2020: 639-648.
|
[16] |
ZAHRA S, GHAZANFAR M A, KHALID A, et al. Novel Centroid Selection Approaches for K-Means Clustering Based Recommender Systems[J]. Information Sciences, 2015, 320: 156-189.
doi: 10.1016/j.ins.2015.03.062
URL
|
[17] |
VERMA S K, MITTAL N, AGARWAL B. Hybrid Recommender System Based on Fuzzy Clustering and Collaborative Filtering[C]// IEEE. The 4th International Conference on Computer and Communication Technology. New York: IEEE, 2013: 116-120.
|
[18] |
LEE O J, JUNG J J, YOU E. Predictive Clustering for Performance Stability in Collaborative Filtering Techniques[C]// IEEE. The 2nd International Conference on Cybernetics. New York: IEEE, 2015: 48-55.
|
[19] |
MORADI P, AHMADIAN S. A Reliability-Based Recommendation Method to Improve Trust-Aware Recommender Systems[J]. Expert Systems with Applications, 2015, 42(21): 7386-7398.
doi: 10.1016/j.eswa.2015.05.027
URL
|
[20] |
LI Hui, MA Xiaoping, SHI Jun. Incorporating Trust Relation with PMF to Enhance Social Network Recommendation Performance[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2016, 30(6): 16-29.
|
[21] |
WANG Fei, LI Tao, WANG Xin, et al. Community Discovery Using Nonnegative Matrix Factorization[J]. Data Mining and Knowledge Discovery, 2011, 22: 493-521.
doi: 10.1007/s10618-010-0181-y
URL
|
[22] |
ZHENG Xiaoyao, LUO Yonglong, SUN Liping, et al. A Novel Social Network Hybrid Recommender System Based on Hypergraph Topologic Structure[J]. World Wide Web, 2018, 21: 985-1013.
doi: 10.1007/s11280-017-0494-5
|
[23] |
YE Mao, YIN Peifeng, LEE W C, et al. Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation[C]// ACM. The 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011: 325-334.
|
[24] |
CHENG Chen, YANG Haiqin, KING I, et al. Fused Matrix Factorization with Geographical and Social Influence in Location-Based Social Networks[C]// AAAI. The AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2012: 17-23.
|
[25] |
LIAN Defu, ZHAO Cong, XIE Xing, et al. GeoMF: Joint Geographical Modeling and Matrix Factorization for Point-of-Interest Recommendation[C]// ACM. The 20 th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 831-840.
|
[26] |
ZHAO Pengpeng, ZHU Haifeng, LIU Yanchi, et al. Where to Go Next: A Spatio-Temporal LSTM Model for Next POI Recommendation[EB/OL]. (2018-06-16)[2023-01-18]. https://arxiv.org/abs/1806.06671.
|
[27] |
ZHANG Zhiqian, LI Chenliang, WU Zhiyong, et al. Next: A Neural Network Framework for Next POI Recommendation[J]. Frontiers of Computer Science, 2020, 14: 314-333.
doi: 10.1007/s11704-018-8011-2
|
[28] |
LIU Yang, WU Anbo. POI Recommendation Method Using Deep Learning in Location-Based Social Networks[J]. Wireless Communications and Mobile Computing, 2021(1): 1-11.
|
[29] |
WEI Xuemei, LIU Yezheng, SUN Jianshan, et al. Dual Subgraph-Based Graph Neural Network for Friendship Prediction in Location-Based Social Networks[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(3): 1-28.
|
[30] |
HE Xiangnan, DENG Kuan, WANG Xiang, et al. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation[C]// ACM. The 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648.
|
[31] |
ISLAM M A, MOHAMMAD M M, DAS S S S, et al. A Survey on Deep Learning Based Point-of-Interest (POI) Recommendations[J]. Neurocomputing, 2022, 472: 306-325.
doi: 10.1016/j.neucom.2021.05.114
URL
|
[32] |
WU Shiwen, ZHANG Yuanxing, GAO Chengliang, et al. GARG: Anonymous Recommendation of Point-of-Interest in Mobile Networks by Graph Convolution Network[J]. Data Science and Engineering, 2020, 5: 433-447.
doi: 10.1007/s41019-020-00135-z
|