Netinfo Security ›› 2022, Vol. 22 ›› Issue (6): 9-25.doi: 10.3969/j.issn.1671-1122.2022.06.002
Previous Articles Next Articles
WANG Juan1,2(), WANG Yunru1,2, WENG Bin1,2, GONG Jiaxin1,2
Received:
2022-01-13
Online:
2022-06-10
Published:
2022-06-30
Contact:
WANG Juan
E-mail:jwang@whu.edu.cn
CLC Number:
WANG Juan, WANG Yunru, WENG Bin, GONG Jiaxin. Survey on Application of Machine Learning in Disassembly on x86 Binaries[J]. Netinfo Security, 2022, 22(6): 9-25.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2022.06.002
任务 | 算法 | 难点 | 准确度 | |
---|---|---|---|---|
指令识别 | 线性扫描 | 填充字符、代码段数据、指令共享字节 | ≥95% | |
递归下降 | 间接分支、无返回函数 | ≥95% | ||
函数 识别 | main函数 | 基于调用约定规则 | — | ≥95% |
函数边界 | 算法+模式匹配 | 间接调用、尾调用、多入口函数、编译器、函数共用代码、非连续函数、无返回函数 | 60%~90% | |
函数指纹 | 难以解决 | — | ||
交叉引用识别 | 大量使用启发式 | 对齐、数据单元大小、函数入口 | ≥95% | |
控制 流图 生成 | 基本块 | 代码扫描+启发式 | — | ≥95% |
直接跳转、直接调用、尾调用 | 启发式 | — | ≥95% | |
间接跳转 | 启发式、值集分析 | 编译器设定、运行效率 | ≥95% | |
间接调用 | 难以解决 | — | ||
无返回函数 | 启发式+ 迭代 | 函数边界 | ≥95% |
相关工作 | 人工选择属性 | 序列化特征 | 控制流 特征 | 数据流特征 | |
---|---|---|---|---|---|
指令边界 识别 | 文献[ | — | 代码、数据序列 | — | — |
XDA | 序列位置 | 原始字节 序列 | — | — | |
函数边界 识别 | ByteWeight | — | 原始字节序列、反汇编指令序列 | — | — |
文献[ | — | 原始字节 序列 | — | — | |
文献[ | 函数序言、尾声模板;自定义结构属性 | — | — | — | |
FID | — | — | — | 寄存器、内存单元数据流依赖 | |
函数指纹、 变量类型 复原 | Eklavya | — | 反汇编指令序列 | — | — |
TypeMiner | — | — | 控制流图 | 数据单元间依赖关系 | |
StateFormer | 序列位置、操作码位置、架构标识序列 | 原始字节 序列 | — | 操作数动态值序列 | |
控制流与 数据流 生成 | Deep-VSA | — | 反汇编指令序列 | — | — |
RENN | — | 反汇编指令序列 | — | — | |
其他二进制分析 工作 | 文献[ | 块级属性、块间属性 | — | — | — |
Asm2vec | — | 反汇编指令序列 | — | — | |
DeepBinDiff | — | 反汇编指令序列 | 控制流图 | — | |
Order Matters | 块相邻;图所属;平台、编译器、优化级别 | 反汇编指令序列 | 控制流图 | — | |
Trex | 指令位置、操作码位置、架构标识序列 | 原始字节序列 | — | 操作数动态值序列 | |
αDiff | 导入的库函数 | 原始字节 序列 | 调用函数的个数、被调用的次数 | — |
相关工作 | 算法 | 数据集 | 效果 (平均) | ||
---|---|---|---|---|---|
传统机器学习 | 人工神经 网络 | ||||
指令边界识别 | 文献[ | PPM | — | 11*[PE(x86)] | Acc.99.98% |
XDA | — | 语言模型MLM (RoBERTa) 微调dense | 3121* [SPEC2017/SPEC2006/BAP(linux/windows;x86/x64)] | Acc.指令99.7%,函数边99% | |
函数边界识别 | 文献[ | CRF | — | 1171*[x86(linux/windows;gcc/icc/msvs)] | AUC 95.61% |
ByteWeight | Weighted Prefix Tree | — | 2200*[BAP(linux/windows;x86/x64)] | Pre.92.84%,Rec.92.96% | |
文献[ | — | Bi-LSTM | 2200*[BAP(linux/windows; x86/x64)] | Pre.97.19%,Rec.94.46% | |
FID | Linear SVC; AdaBoost; GradientBoosting | — | 4240*[BAP子集(gcc/icc/llvm;7*混淆机制)] | Pre.91.6%,Rec.95.9% | |
函数 指纹、 变量类型复原 | Eklavya | — | 嵌入模型 word2vec; 分类模型 RNN+GRU | 5168*[BAP+5扩展包(x86/x64)] | Acc.参数个数 81.72%,参数 类型80.69% |
Debin | Extremely randomized Trees;CRF | — | 9000*[ELF(x86/x64/arm)] | 变量类型 Pre.68.2%,Rec.68.37% | |
TypeMiner | Random Forest; LinearSVC | — | 14*软件 | 指针/数值类型Pre.93%,Rec.93%;整型长度Pre.77%,Rec.64% | |
StateFormer | — | 语言模型GSM(新) 微调dense | 33*[软件(arm/mips/x86/x64;3混淆机制)] | 变量类型Pre.79.41%,Rec.75.19% | |
控制流与数据流生成 | Deep-VSA | — | 基于Bi-LSTM的链式网络 | 78*[软件包(Linux)] | Pre.97.46%,Rec.95.18% |
RENN | — | Conditional GRU(新) | 78*[软件包(Linux)] | Pre.99.91%,Rec.99.88% |
[1] | ANDRIESSE D, CHEN Xi, VEEN V V D, et al. An in-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries[C]// USENIX. 25th USENIX Security Symposium (USENIX Security 16). Berkeley:USENIX, 2016: 583-600. |
[2] | PANG Chengbin, YU Ruotong, CHEN Yaohui, et al. Sok: All You Ever Wanted to Know about x86/x64 Binary Disassembly but Were Afraid to Ask[C]// IEEE. 2021 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2021: 833-851. |
[3] | SHIN E C R, SONG D, MOAZZEZI R. Recognizing Functions in Binaries with Neural Networks[C]// USENIX. 24th USENIX Security Symposium (USENIX Security 15). Berkeley:USENIX, 2015: 611-626. |
[4] | WARTELL R, ZHOU Yan, HAMLEN K W, et al. Differentiating Code from Data in x86 Binaries[C]// Springer. Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Heidelberg: Springer, 2011: 522-536. |
[5] | HARRIS L C, MILLER B P. Practical Analysis of Stripped Binary Code[J]. ACM SIGARCH Computer Architecture News, 2005, 33(5): 63-68. |
[6] | KINDER J, VEITH H. Jakstab: A Static Analysis Platform for Binaries[C]// Springer. 20th International Conference on Computer Aided Verification. Heidelberg: Springer, 2008: 423-427. |
[7] | KRUEGEL C, ROBERTSON W, VALEUR F, et al. Static Disassembly of Obfuscated Binaries[C]// USENIX. USENIX Security Symposium. Berkeley: USENIX, 2004: 18-33. |
[8] | LEE J, AVGERINOS T, BRUMLEY D. TIE: Principled Reverse Engineering of Types in Binary Programs[EB/OL]. (2011-02-06) [2021-10-22]. https://www.researchgate.net/publication/221655364_TIE_Principled_Reverse_Engineering_of_Types_in_Binary_Programs. |
[9] | ELWAZEER K, ANAND K, KOTHA A, et al. Scalable Variable and Data Type Detection in a Binary Rewriter[C]// ACM. 34th ACM SIGPLAN Conference on Programming Language Design and Implementation. New York: ACM, 2013: 51-60. |
[10] | WANG Ruoyu, SHOSHITAISHVILI Y, BIANCHI A, et al. Ramblr: Making Reassembly Great Again[EB/OL]. (2017-02-27) [2021-11-03]. https://sefcom.asu.edu/publications/ramblr-making-reassembly-great-again-ndss2017.pdf. |
[11] | YE Zhibin, JIANG Xin, SHI Dawei. Combined Method of Constructing Binary-Oriented Control Flow Graphs[J]. Application Research of Computers, 2018, 321(7): 254-257. |
叶志斌, 姜鑫, 史大伟. 一种面向二进制的控制流图混合恢复方法[J]. 计算机应用研究, 2018, 321(7): 254-257. | |
[12] | WANG Jun, PANG Jianmin, FU Liguo, et al. An Efficient Feedback Static Binary Translator for Solving Indirect Branch[J]. Journal of Computer Research and Development, 2019, 56(4): 742-754. |
王军, 庞建民, 傅立国, 等. 一种高效解决间接转移的反馈式静态二进制翻译方法[J]. 计算机研究与发展, 2019, 56(4): 742-754. | |
[13] |
CIFUENTES C, EMMERIK M V. Recovery of Jump Table Case Statements from Binary Code[J]. Science of Computer Programming, 2001, 40(2): 171-188.
doi: 10.1016/S0167-6423(01)00014-4 URL |
[14] | KÄSTNER D, WILHELM S. Generic Control Flow Reconstruction from Assembly Code[C]// ACM. Joint Conference on Languages, Compilers and Tools for Embedded Systems:Software and Compilers for Embedded Systems. New York: ACM, 2002: 46-55. |
[15] | BALAKRISHNAN G, REPS T. WYSINWYX: What You See is Not What You eXecute[J]. ACM Transactions on Programming Languages and Systems (TOPLAS), 2010, 32(6): 1-84. |
[16] | BLETSCH T, JIANG Xuxian, FREEH V. Mitigating Code-Reuse Attacks with Control-Flow Locking[C]// ACM. 27th Annual Computer Security Applications Conference. New York: ACM, 2011: 353-362. |
[17] | GE Xinyang, TALELE N, PAYER M, et al. Fine-Grained Control-Flow Integrity for Kernel Software[C]// IEEE. 2016 IEEE European Symposium on Security and Privacy (EuroS&P). New York:IEEE, 2016: 179-194. |
[18] | SUI Yulei, XUE Jingling. SVF: Interprocedural Static Value-Flow Analysis in LLVM[C]// ACM. 25th International Conference on Compiler Construction. New York: ACM, 2016: 265-266. |
[19] | NIU Ben, TAN Gang. Modular Control-Flow Integrity[C]// ACM. 35th ACM SIGPLAN Conference on Programming Language Design and Implementation. New York: ACM, 2014: 577-587. |
[20] | LU Kangjie, HU Hong. Where Does It Go? Refining Indirect-Call Targets with Multi-Layer Type Analysis[C]// ACM. 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 1867-1881. |
[21] | TICE C, ROEDER T, COLLINGBOURNE P, et al. Enforcing Forward-Edge Control-Flow Integrity in {GCC}&{LLVM}[C]// USENIX. 23rd USENIX Security Symposium. Berkeley: USENIX, 2014: 941-955. |
[22] | KIM S H, SUN Cong, ZENG Dongrui, et al. Refining Indirect Call Targets at the Binary Level[EB/OL]. (2021-02-21) [2021-11-23]. https://www.cse.psu.edu/-gxt29/papers/cfgByDatalog_NDSS21.pdf. |
[23] | VEEN V V D, GÖKTAS E, CONTAG M, et al. A Tough Call: Mitigating Advanced Code-Reuse Attacks at the Binary Level[C]// IEEE. 2016 IEEE Symposium on Security and Privacy (SP). New York:IEEE, 2016: 934-953. |
[24] | WAHBE R, LUCCO S, ANDERSON T E, et al. Efficient Software-Based Fault Isolation[C]// ACM. 14th ACM Symposium on Operating Systems Principles. New York: ACM, 1993: 203-216. |
[25] | ZHANG Chao, WEI Tao, CHEN Zhaofeng, et al. Practical Control Flow Integrity and Randomization for Binary Executables[C]// IEEE. 2013 IEEE Symposium on Security and Privacy. New York: IEEE, 2013: 559-573. |
[26] | PEI Kexin, GUAN J, WILLIAMS-KING D, et al. XDA: Accurate, Robust Disassembly with Transfer Learning[EB/OL]. (2020-10-03) [2021-08-11]. https://www.cs.columbia.edu/-junfeng/papers/xda-ndss21.pdf. |
[27] | MAIER A, GASCON H, WRESSNEGGER C, et al. TypeMiner: Recovering Types in Binary Programs Using Machine Learning[C]// Springer. International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Berlin: Springer, 2019: 288-308. |
[28] | PEI Kexin, GUAN J, BROUGHTON M, et al. StateFormer: Fine-Grained Type Recovery from Binaries Using Generative State Modeling[C]// ACM. 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York: ACM, 2021: 690-702. |
[29] | DUAN Yue, LI Xuezixiang, WANG Jinghan, et al. DEEPBINDIFF: Learning Program-Wide Code Representations for Binary Diffing[EB/OL]. (2020-02-23) [2021-09-11]. https://par.nsf.gov/servlets/purl/10198294. |
[30] | YU Zeping, CAO Rui, TANG Qiyi, et al. Order Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection[C]// AAAI. 2020 AAAI Conference on Artificial Intelligence. California: AAAI, 2020: 1145-1152. |
[31] | PEI Kexin, XUAN Zhou, YANG Junfeng, et al. TREX: Learning Execution Semantics from Micro-Traces for Binary Similarity[EB/OL]. (2020-12-16) [2021-09-26]. https://arxiv.org/abs/2012.08680. |
[32] | LIU Bingchang, HUO Wei, ZHANG Chao, et al. αDiff: Cross-Version Binary Code Similarity Detection with DNN[C]// ACM. 33rd ACM/IEEE International Conference on Automated Software Engineering. New York: ACM, 2018: 667-678. |
[33] | ROSENBLUM N E, ZHU Xiaojin, MILLER B P, et al. Learning to Analyze Binary Computer Code[C]// AAAI. 23rd AAAI Conference on Artificial Intelligence. California: AAAI, 2008: 798-804. |
[34] | SU Xiaohui. Cross Platform Binary Code Association Analysis Based on Deep Learning[D]. Harbin: Harbin Institute of Technology, 2019. |
苏晓辉. 基于深度学习的跨平台二进制代码关联分析[D]. 哈尔滨: 哈尔滨工业大学, 2019. | |
[35] | BAO T, BURKET J, WOO M, et al. BYTEWEIGHT: Learning to Recognize Functions in Binary Code[C]// USENIX. 23rd USENIX Security Symposium. Berkeley: USENIX, 2014: 845-860. |
[36] | CHUA Z L, SHEN Shiqi, SAXENA P, et al. Neural Nets Can Learn Function Type Signatures from Binaries[C]// USENIX. 26th USENIX Security Symposium. Berkeley: USENIX, 2017: 99-116. |
[37] | GUO Wenbo, MU Dongliang, XING Xinyu, et al. DEEPVSA: Facilitating Value-Set Analysis with Deep Learning for Postmortem Program Analysis[C]// USENIX. 28th USENIX Security Symposium. Berkeley: USENIX, 2019: 1787-1804. |
[38] | MU Dongliang, GUO Wenbo, CUEVAS A, et al. RENN: Efficient Reverse Execution with Neural-Network-Assisted Alias Analysis[C]// IEEE. 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). New York:IEEE, 2019: 924-935. |
[39] | DING S S H, FUNG B C M, CHARLAND P. Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search Against Code Obfuscation and Compiler Optimization[C]// IEEE. 2019 IEEE Symposium on Security and Privacy (SP). New York:IEEE, 2019: 472-489. |
[40] | LE Q, MIKOLOV T. Distributed Representations of Sentences and Documents[C]// ACM. International Conference on Machine Learning. New York: ACM, 2014: 1188-1196. |
[41] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[EB/OL]. (2017-06-12) [2021-11-23]. https://arxiv.org/abs/1706.03762. |
[42] | WANG Shuai, WANG Pei, WU Dinghao. Semantics-Aware Machine Learning for Function Recognition in Binary Code[C]// IEEE. 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). New York:IEEE, 2017: 388-398. |
[43] | ANDRIESSE D, SLOWINSKA A, BOS H. Compiler-Agnostic Function Detection in Binaries[C]// IEEE. 2017 IEEE European Symposium on Security and Privacy (EuroS&P). New York:IEEE, 2017: 177-189. |
[44] | FEDERICO A D, PAYER M, AGOSTA G. Rev.ng: A Unified Binary Analysis Framework to Recover CFGs and Function Boundaries[C]// ACM. 26th International Conference on Compiler Construction. New York: ACM, 2017: 131-141. |
[45] | HE Jingxuan, IVANOV P, TSANKOV P, et al. DEBIN: Predicting Debug Information in Stripped Binaries[C]// ACM. 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 1667-1680. |
[46] | BRUMLEY D, JAGER I, AVGERINOS T, et al. BAP: A Binary Analysis Platform[C]// Springer. 2011 International Conference on Computer Aided Verification. Berlin: Springer, 2011: 463-469. |
[47] | SHE Dongdong, CHEN Yizheng, SHAH A, et al. Neutaint: Efficient Dynamic Taint Analysis with Neural Networks[C]// IEEE. 2020 IEEE Symposium on Security and Privacy (SP). New York:IEEE, 2020: 1527-1543. |
[48] | ZONG Peiyuan, LYU Tao, WANG Dawei, et al. Fuzzguard: Filtering out Unreachable Inputs in Directed Grey-Box Fuzzing through Deep Learning[C]// USENIX. 29th USENIX Security Symposium. Berkeley: USENIX, 2020: 2255-2269. |
[49] | LUNDBERG S M, LEE S I. A Unified Approach to Interpreting Model Predictions[C]// ACM. 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 4765-4774. |
[50] | RIBEIRO M T, SINGH S, GUESTRIN C. ‘Why Should I Trust You?’ Explaining the Predictions of Any Classifier[C]// ACM. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1135-1144. |
[51] | RIBEIRO M T, SINGH S, GUESTRIN C. Anchors: High-Precision Model-Agnostic Explanations[C]// AAAI. 2018 AAAI Conference on Artificial Intelligence. California: AAAI, 2018: 1527-1535. |
[52] | GUO Wenbo, MU Dongliang. XU Jun, et al. Lemna: Explaining Deep Learning Based Security Applications[C]// ACM. 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 364-379. |
[53] | ZHANG Mingwei, SEKAR R. Control Flow Integrity for COTS Binaries[C]// USENIX. 22nd USENIX Security Symposium. Berkeley: USENIX, 2013: 337-352. |
[54] | WANG Jianqiang, MA Siqi, ZHANG Yuanyuan, et al. NLP-EYE: Detecting Memory Corruptions via Semantic-Aware Memory Operation Function Identification[C]// USENIX. 22nd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019). Berkeley:USENIX, 2019: 309-321. |
[55] | ZUO Fei, LI Xiaopeng, YOUNG P, et al. Neural Machine Translation Inspired Binary Code Similarity Comparison beyond Function Pairs[EB/OL]. (2019-02-24) [2021-06-04]. https://arxiv.org/pdf/1808.04706.pdf. |
[56] | GRIECO G, GRINBLAT G L, UZAL L, et al. Toward Large-Scale Vulnerability Discovery Using Machine Learning[C]// ACM. Sixth ACM Conference on Data and Application Security and Privacy. New York: ACM, 2016: 85-96. |
[57] | LI Zhen, ZOU Deqing, XU Shouhuai, et al. VulDeePecker: A Deep Learning-Based System for Vulnerability Detection[EB/OL]. (2018-02-18) [2021-07-13]. https://zzm7000.github.io/teaching/2021springcse703/papers/1801.01681.pdf. |
[58] | XIA Bing, PANG Jianmin, ZHOU Xin, et al. Research Progress on Binary Code Similarity Search[J]. Journal of Computer Applications, 2022, 42(4): 985-998. |
夏冰, 庞建民, 周鑫, 等. 二进制代码相似性搜索研究进展[J]. 计算机应用, 2022, 42(4): 985-998. | |
[59] | FANG Lei, WU Zehui, WEI Qiang. Summary of Binary Code Similarity Detection Techniques[J]. Computer Science, 2021, 48(5): 1-8. |
方磊, 武泽慧, 魏强. 二进制代码相似性检测技术综述[J]. 计算机科学, 2021, 48(5): 1-8. | |
[60] | YU Yingchao, CHEN Zuoning, GAN Shuitao, et al. Research on the Technologies of Security Analysis Technologies on the Embedded Device Firmware[J]. Chinese Journal of Computers, 2021, 44(5): 859-881. |
于颖超, 陈左宁, 甘水滔, 等. 嵌入式设备固件安全分析技术研究[J]. 计算机学报, 2021, 44(5): 859-881. | |
[61] | ZHANG Lei, CUI Yong, LIU Jing, et al. Application of Machine Learning in Cyberspace Security Research[J]. Chinese Journal of Computers, 2018, 41(9): 1943-1975. |
张蕾, 崔勇, 刘静, 等. 机器学习在网络空间安全研究中的应用[J]. 计算机学报, 2018, 41(9): 1943-1975. | |
[62] | LI Yun, HUANG Chenlin, WANG Zhongfeng, et al. Survey of Software Vulnerability Mining Methods Based on Machine Learning[J]. Journal of Software, 2020, 31(7): 2040-2061. |
李韵, 黄辰林, 王中锋, 等. 基于机器学习的软件漏洞挖掘方法综述[J]. 软件学报, 2020, 31(7): 2040-2061. |
[1] | DUAN Xiaoyi, LI You, LINGHU Yunxing, HU Ronglei. Research on the Method of Side Channel Attack Based on RF Algorithm [J]. Netinfo Security, 2022, 22(1): 19-26. |
[2] | GUO Chun, CAI Wenyan, SHEN Guowei, ZHOU Xuemei. Research on SQL Injection Attacks Detection Method Based on the Truncated Key Payload [J]. Netinfo Security, 2021, 21(7): 43-53. |
[3] | MA Xiao, CAI Manchun, LU Tianliang. Malicious Domain Name Training Data Generation Technology Based on Improved CNN Model [J]. Netinfo Security, 2021, 21(10): 69-75. |
[4] | XU Yu, ZHOU You, LIN Lu, ZHANG Cong. Applied Research of Unsupervised Machine Learning in Game Anti-fraud [J]. Netinfo Security, 2020, 20(9): 32-36. |
[5] | GUO Chun, CHEN Changqing, SHEN Guowei, JIANG Chaohui. A Ransomware Classification Method Based on Visualization [J]. Netinfo Security, 2020, 20(4): 31-39. |
[6] | DU Yifeng, GUO Yuanbo. A Dynamic Access Control Method for Fog Computing Based on Trust Value [J]. Netinfo Security, 2020, 20(4): 65-72. |
[7] | Zewen MA, Yang LIU, Hongping XU, Hang YI. DoS Traffic Identification Technology Based on Integrated Learning [J]. Netinfo Security, 2019, 19(9): 115-119. |
[8] | Yuling LIU, Yunshan TANG, Qi ZHANG, Feng LI. Power Dispatch Software Security Situation Assessment Method [J]. Netinfo Security, 2019, 19(8): 15-21. |
[9] | Yanpeng CUI, Luming FENG, Zheng YAN, Huaqing LIN. Research on Software Security Model of Cloud Computing Based on Program Slicing Technology [J]. Netinfo Security, 2019, 19(7): 31-41. |
[10] | Guanheng CHEN, Jinshu SU. Abnormal Traffic Detection Algorithm Based on Deep Neural Network [J]. Netinfo Security, 2019, 19(6): 68-75. |
[11] | Chunqi TIAN, Jing LI, Wei WANG, Liqing ZHANG. A Method for Improving the Performance of Spark on Container Cluster Based on Machine Learning [J]. Netinfo Security, 2019, 19(4): 11-19. |
[12] | Jianwei HU, Wei ZHAO, Zheng YAN, Rui ZHANG. Analysis and Implementation of SQL Injection Vulnerability Mining Technology Based on Machine Learning [J]. Netinfo Security, 2019, 19(11): 36-42. |
[13] | Jian ZHANG, Bohan CHEN, Liangyi GONG, Zhaojun GU. Research on Malware Detection Technology Based on Image Analysis [J]. Netinfo Security, 2019, 19(10): 24-31. |
[14] | Weiping WEN, Jingwei LI, Yingnan JIAO, Hailin LI. A Vulnerability Detection Method Based on Random Detection Algorithm and Information Aggregation [J]. Netinfo Security, 2019, 19(1): 1-7. |
[15] | Yingchao YU, Lin DING, Zuoning CHEN. Research on Attacks and Defenses towards Machine Learning Systems [J]. Netinfo Security, 2018, 18(9): 10-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||