Netinfo Security ›› 2023, Vol. 23 ›› Issue (12): 69-90.doi: 10.3969/j.issn.1671-1122.2023.12.008
Previous Articles Next Articles
YANG Li, ZHU Lingbo(), YU Yueming, MIAO Yinbin
Received:
2023-10-24
Online:
2023-12-10
Published:
2023-12-13
CLC Number:
YANG Li, ZHU Lingbo, YU Yueming, MIAO Yinbin. Review of Federal Learning and Offensive-Defensive Confrontation[J]. Netinfo Security, 2023, 23(12): 69-90.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.12.008
投毒方式 | 投毒思路 |
---|---|
基于标签 反转[ | 通过直接修改目标类别的训练数据的标签信息,而数据的特征保持不变 |
基于目标 优化[ | 将要解决的目标转化为一系列最优解问题。在数据投毒中,目标问题通常是制作最有效的中毒样本,既可以用于计算标签中毒的最佳数据点集,也可用于找到最有效的数据修改方案 |
基于梯度 优化[ | 使中毒样本朝着对抗目标函数 |
基于干净 标签[ | 干净标签数据投毒攻击中,中毒图像的标签与视觉感官是一致的,但测试图像会被错误分类 |
研究 | 特征依据 | 具体方案 |
---|---|---|
BLANCHARD[ | 欧氏距离 | Krum、Multi-Krum |
MHAMDI[ | Bulyan | |
CHEN[ | 中位数 | 取分组后均值的中位数 |
XIE[ | 每个维度都取中位数 | |
YIN[ | ||
KHAZBAK[ 等人 | 余弦相似度 | “用户梯度更新”与“其他所有参与方的梯度” |
MU?OZ-GONZáLEZ[ | “用户梯度更新”与“所有梯度更新的加权平均值” | |
FUNG[ | “用户的历史聚合更新”与“其他所有参与方的梯度更新” | |
YU[ | 聚类算法 | K-means |
SINGH[ | 按照公开属性(如地区、偏好、性别等)聚类分组 |
[1] | POUYANFAR S, SADIQ S, YAN Yilin, et al. A Survey on Deep Learning: Algorithms, Techniques, and Applications[J]. ACM Computing Surveys, 2019, 51(5): 1-36. |
[2] | HATCHER W G, YU Wei. A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends[J]. IEEE Access, 2018(6), 24411-24432. |
[3] | GOODFELLOW I, COURVILLE A, BENGIOB Y. Deep Learning[M]. Cambridge: MIT Press, 2016. |
[4] | TRASK A W. Grokking Deep Learning[M]. Greenwich: Manning Publications, 2019. |
[5] | YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated Machine Learning: Concept and Applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19. |
[6] | MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[EB/OL]. (2023-01-26)[2023-10-10]. https://arxiv.org/abs/1602.05629. |
[7] | MCMAHAN H B, MOORE E, RAMAGE D, et al. Federated Learning of Deep Networks Using Model Averaging[EB/OL]. (2017-02-28)[2023-10-10]. https://arxiv.org/abs/1602.05629v3. |
[8] | LIU Yang, YANG Qiang, CHEN Tianjian, et al. Federated Learning and Transfer Learning for Privacy, Security and Confidentiality[EB/OL]. (2019-02-21)[2023-10-10]. https://aisp-1251170195.cos.ap-hongkong.myqcloud.com/fedweb/1552916850679.pdf. |
[9] | YANG T, ANDREW G, EICHNER H, et al. Applied Federated Learning: Improving Google Keyboard Query Suggestions[EB/OL]. (2018-12-07)[2023-10-10]. https://arxiv.org/abs/1812.02903. |
[10] | HARD A, RAO K, MATHEWS R, et al. Federated Learning for Mobile Keyboard Prediction[EB/OL]. (2019-02-28)[2023-10-10]. https://arxiv.org/abs/1811.03604. |
[11] | CRAMER R, DAMGARD I, NIELSEN J B. Multiparty Computation from Threshold Homomorphic Encryption[C]// IACR. Proceedings of the International Conference on the Theoryand Application of Cryptographic Techniques: Advances in Cryptology. Berlin:Springer, 2001: 280-299. |
[12] | DAMGARD I, NIELSEN J B. Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption[C]// IACR.Proceedings of Advances in Cryptology. Berlin:Springer, 2003: 247-264. |
[13] | KAIROUZ P, MCMAHAN H B, AVENT B, et al. Adances and Open Problems in Federated Learning[EB/OL]. (2019-12-10)[2023-10-10]. https://arxiv.org/abs/1912.04977. |
[14] | SHOKRI R, STRONATI M, SONG Congzheng, et al. Membership Inference Attacks against Machine Learning Models[EB/OL]. (2017-03-31)[2023-10-10]. https://arxiv.org/abs/1610.05820. |
[15] | MELIS L, SONG Congzheng, DE C E, et al. Exploiting Unintended Feature Leakage in Collaborative Learning[C]// IEEE.Proceedings of 40th IEEE Symposium on Security and Privacy. Berlin:IEEE, 2019: 691-706. |
[16] | NASR M, SHOKRI R, HOUMANSADR A. Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-Box Inference Attacks against Centralized and Federated Learning[C]// IEEE. Proceedings of the IEEE Symposium on Security and Privacy. Berlin:IEEE, 2019: 739-753. |
[17] | CHEN Jiale, ZHANG Jiale, ZHAO Yanchao, et al. Beyond Model-Level Membership Privacy Leakage: An Adversarial Approach in Federated Learning[C]// IEEE. International Conference on Computer Communications and Networks. New York: IEEE, 2020: 1-9. |
[18] | ZHANG Jingwen, ZHANG Jiale, CHEN Junjun, et al. GAN Enhanced Membership Inference: A Passive Local Attack in Federated Learning[C]// IEEE.ICC 2020-2020 IEEE International Conference on Communications. New York: IEEE, 2020: 1-6. |
[19] | HITAJ B, ATENIESE G, PEREZ-CRUZ F. Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning[C]// ACM. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. Dallas: Association for Computing Machinery, 2017: 603-618. |
[20] | WANG Zhibo, SONG Mengkai, ZHANG Zhifei, et al. Beyond Inferring Class Representatives: User-Level Privacy Leakage from Federated Learning.[C]// IEEE. IEEE Conference on Computer Communications. New York: IEEE, 2019: 2512-2520. |
[21] |
SONG Mengkai, WANG Zhibo, ZHANG Zhifei, et al. Analyzing User-Level Privacy Attack against Federated Learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(10): 2430-2444.
doi: 10.1109/JSAC.49 URL |
[22] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
doi: 10.1109/5.726791 URL |
[23] | ZHU Ligeng, LIU Zhijian, HAN Song. Deep Leakage from Gradients[C]// NIPS. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: NIPS, 2019: 14747-14756. |
[24] | GEIPING J, BAUERMEISTER H, DRÖGE H, et al. Inverting Gradients-How Easy is It to Break Privacy in Federated Learning?[C]// NIPS. Proceedings of the 34rd International Conference on Neural Information Processing Systems. Vancouver: ACM, 2020: 16937-16947. |
[25] | KINGMA D P, BA J. Adam: A Method for Stochastic Optimization[EB/OL]. (2017-01-30)[2023-10-10]. https://arxiv.org/abs/1412.6980. |
[26] | ZHAO Bo, MOPURI K R, BILEN H. IDLG: Improved Deep Leakage from Gradients[EB/OL]. (2020-01-08)[2023-10-10]. https://arxiv.org/abs/2001.02610. |
[27] | WEI Wenqi, LIU Ling, LOPER M, et al. A Framework for Evaluating Client Privacy Leakages in Federated Learning[C]// Springer. Computer Security-ESORICS 2020. Berlin:Springer, 2020: 545-566. |
[28] | DARIO P, DANILO F, GIUSEPPE A. Eluding Secure Aggregation in Federated Learning via Model Inconsistency[C]// ACM. Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. New York: Association for Computing Machinery, 2022: 2429-2443. |
[29] |
SHEN Meng, WANG Huan, ZHANG Bin, et al. Exploiting Unintended Property Leakage in Blockchain-Assisted Federated Learning for Intelligent Edge Computing[J]. IEEE Internet of Things Journal, 2021, 8(4): 2265-2275.
doi: 10.1109/JIoT.6488907 URL |
[30] | ZHOU Chunyi, GAO Yansong, FU Anmin, et al. PPA: Preference Profiling Attack against Federated Learning[EB/OL]. (2022-08-09)[2023-10-10]. https://arxiv.org/abs/2202.04856. |
[31] | YAO A C. Protocols for Secure Computations[EB/OL]. (2008-07-18)[2023-10-10]. https://ieeexplore.ieee.org/document/4568388. |
[32] | XU Runhua, BARACALDO N, ZHOU Yi, et al. HybridAlpha: An Efficient Approach for Privacy-Preserving Federated Learning[C]// ACM.Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security. New York: ACM, 2019: 13-23. |
[33] | BONEH D, SAHAI A, WATERS B. Functional Encryption: Definitions and Challenges[C]// Springer. Proceedings of the 8th Theory of Cryptography Conference IACR, Berlin:Springer. 2011: 253-273. |
[34] | KHAZBAK Y, TANTianxiang, CAOGuohong. MLGuard: Mitigating Poisoning Attacks in Privacy Preserving Distributed Collaborative Learning[C]// IEEE.Proceedings of the 29th International Conference on Computer Communications and Networks. New York: IEEE, 2020: 1-9. |
[35] |
LI Yong, ZHOU Yipeng, JOLFAEI A, et al. Privacy-Preserving Federated Learning Framework Based on Chained Secure Multiparty Computing[J]. IEEE Internet of Things Journal, 2021, 8(8): 6178-6186.
doi: 10.1109/JIOT.2020.3022911 URL |
[36] | DWORK C. Differential Privacy[EB/OL]. (2006-07-10)[2023-10-10]. https://doi.org/10.1007/978-1-4419-5906-5_752. |
[37] | GEYER R C, KLEIN T, NABI M. Differentially Private Federated Learning: A Client Level Perspective[EB/OL]. (2018-03-01)[2023-10-10]. https://arxiv.org/abs/1712.07557. |
[38] | JAYARAMAN B, WANG Lingxiao, EVANS D, et al. Distributed Learning without Distress: Privacy-Preserving Empirical Risk Minimization[C]// ACM. Proceedings of the 32nd Internationall Conference on Neural Information Processing Systems. New York: ACM, 2018: 6346-6357. |
[39] | BHOWMICK A, DUCHI J, FREUDIGER J, et al. Protection against Reconstruction and Its Applications in Private Federated Learning[EB/OL]. (2019-06-03)[2023-10-10]. https://arxiv.org/abs/1812.00984. |
[40] | TRIASTCYN A, FALTINGS B. Federated Learning with Bayesian Differential Privacy[C]// IEEE.Proceedings of the IEEE International Conference on Big Data. New York: IEEE, 2019: 2587-2596. |
[41] |
HUANG Xixi, DING Ye, JIANG Z L, et al. DP-Fl: A Novel Differentially Private Federated Learning Framework for the Unbalanced Data[J]. World Wide Web, 2020, 23(4): 2529-2545.
doi: 10.1007/s11280-020-00780-4 |
[42] |
WU Maoqiang, YE Dongdong, DING Jiahao, et al. Incentivizing Differentially Private Federated Learning: A Multidimensional Contract Approach[J]. IEEE Internet of Things Journal, 2021, 8(13): 10639-10651.
doi: 10.1109/JIOT.2021.3050163 URL |
[43] | RIVEST R L, ADLEMAN L, DERTOUZOS M L, et al. On Data Banks and Privacy Homomorphisms[J]. Foundations of Secure Computation, 1978, 4 (11): 169-180. |
[44] | PAILLIER P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classe[C]// IEEE. Proceedings of International Conference on the Theory and Applications of Cryptographic Techniques. New York: IEEE, 1999: 223-238. |
[45] | PHONG L T, AONO Y, HAYASHI T, et al. Privacy-Preserving Deep Learning: Revisited and Enhanced[C]// ATIS.Proceedings of the 8th Internaitonal Conference on Applications and Techniques in Information Security. Berlin:Springer, 2017: 100-110. |
[46] | HAO Meng, LI Hongwei, XU Guowen, et al. Towards Efficient and Privacy-Preserving Federated Deep Learning[C]// IEEE. Proceedings of the 2019 IEEE International Conference on Communications. New York: IEEE, 2019: 1-6. |
[47] |
CHAI Di, WANG Leye, CHEN Kai, et al. Secure Federated Matrix Factorization[J]. IEEE Intelligent Systems, 2021, 36(5): 11-20.
doi: 10.1109/MIS.2020.3014880 URL |
[48] | FANG Chen, GUO Yuanbo, WANG Na, et al. Highly Efficient Federated Learning with Strong Privacy Preservation in Cloud Computing[EB/OL]. (2020-09-01)[2023-10-10]. https://doi.org/10.1016/j.cose.2020.101889. |
[49] |
HAO Meng, LI Hongwei, LUO Xizhao, et al. Efficient and Privacy-Enhanced Federated Learning for Industrial Artificial Intelligence[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6532-6542.
doi: 10.1109/TII.9424 URL |
[50] | FANG Chen, GUO Yuanbo, HU Yongjin, et al. Privacy-Preserving and Communication-Efficient Federated Learning in Internet of Things[EB/OL]. (2021-04-01)[2023-10-10]. https://doi.org/10.1016/j.cose.2021.102199. |
[51] |
FROELICHER D, TRONCOSO-PASTORIZA J R, PYRGELIS A, et al. Scalable Privacy-Preserving Distributed Learning[J]. Proceedings on Privacy Enhancing Technologies, 2021, 2021(2): 323-347.
doi: 10.2478/popets-2021-0030 URL |
[52] | SAV S, PYRGELIS A, TRONCOSO-PASTORIZA J R, et al. POSEIDON: Privacy-Preserving Federated Neural Network Learning[EB/OL]. (2021-01-08)[2023-10-10]. https://arxiv.org/abs/2009.00349. |
[53] | BONAWITZ K, IVANOV V, KREUTER B, et al. Practical Secure Aggregation for Privacy-Preserving Machine Learning[C]// ACM.Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 1175-1191. |
[54] | SO J, ALI R E, GULER B, et al. Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage in Federated Learning[EB/OL]. (2023-07-27)[2023-10-10]. https://arxiv.org/abs/2106.03328. |
[55] | LI Wenqi, MILLETARÌ F, XU Daguang, et al. Privacy-Preserving Federated Brain Tumour Segmentation[EB/OL]. (2023-10-10)[2023-10-10]. https://link.springer.com/chapter/10.1007/978-3-030-32692-0_16. |
[56] |
ZHAO Bin, FAN Kai, YANG Kan, et al. Anonymous and Privacy-Preserving Federated Learning with Industrial Big Data[J]. IEEE Transactions on Industrial Informatics, 2021, 17: 6314-6323.
doi: 10.1109/TII.2021.3052183 URL |
[57] | IOFFE S, SZEGEDY C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]// ACM.Proceedings of the 32nd International Conference on Machine Learning. New York: ACM, 2015: 448-456. |
[58] | ANDREUX M, DU T J O, BEGUIER C, et al. Siloed Federated Learning for Multi-Centric Histopathology Datasets[EB/OL]. (2022-08-17)[2023-10-10]. https://arxiv.org/abs/2008.07424. |
[59] | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing Properties of Neural Networks[EB/OL]. (2013-12-21)[2023-10-10]. https://arxiv.org/abs/1312.6199. |
[60] | WANG Hongyi, SREENIVASAN K, RAJPUT S, et al. Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[EB/OL]. (2020-07-09)[2023-10-10]. https://arxiv.org/abs/2007.05084. |
[61] | PANG Qi, YUAN Yuanyuan, WANG Shuai. Attacking Vertical Collaborative Learning System Using Adversarial Dominating Inputs[EB/OL]. (2023-04-11)[2023-10-10]. https://arxiv.org/abs/2201.02775v1. |
[62] | SHI Lei, CHEN Zhen, SHI Yucheng, et al. Data Poisoning Attacks on Federated Learning by Using Adversarial Samples[EB/OL]. (2022-07-01)[2023-10-10]. https://ieeexplore.ieee.org/document/9853326. |
[63] | BIGGIO B, NELSON B, LASKOV P. Poisoning Attacks against Support Vector Machines[C]// ACM. Proceedings of the 29th International Coference on Machine Learning. New York: ACM, 2012: 1467-1474. |
[64] | TOLPEGIN V, TRUEX S, GURSOY M E, et al. Data Poisoning Attacks against Federated Learning Systems[EB/OL]. (2020-08-11)[2023-10-10]. https://arxiv.org/abs/2007.08432. |
[65] | ZHANG Jiale, CHEN Junjun, WU Di, et al. Poisoning Attack in Federated Learning Using Generative Adversarial Nets[EB/OL]. (2019-10-31)[2023-10-10]. https://ieeexplore.ieee.org/document/8887357. |
[66] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Nets[C]// ACM. Proceedings of the 27th International Conference on Neural Information Processing Systems. New York: ACM, 2014: 2672-2680. |
[67] |
ZHANG Jiale, CHEN Bing, CHENG Xiang, et al. PoisonGAN: Generative Poisoning Attacks against Federated Learning in Edge Computing Systems[J]. IEEE Internet of Things Journal, 2021, 8(5): 3310-3322.
doi: 10.1109/JIoT.6488907 URL |
[68] | LI Tian, SAHU A K, ZAHEER M, et al. Federated Optimization in Heterogeneous Networks[EB/OL]. (2020-04-21)[2023-10-10]. https://arxiv.org/abs/1812.06127. |
[69] | BLANCHARD P, EL M E M, GUERRAOUI R, et al. Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[C]// ACM.Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 118-128. |
[70] | YIN Dong, CHEN Yudong, RAMCHANDRAN K, et al. Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates[EB/OL]. (2021-02-25)[2023-10-10]. https://arxiv.org/abs/1803.01498. |
[71] | MHAMDI EL M E, GUERRAOUI R, ROUAULT S. The Hidden Vulnerability of Distributed Learning in Byzantium[EB/OL]. (2018-07-17)[2023-10-10]. https://arxiv.org/abs/1802.07927. |
[72] | BARUCH M, BARUCH G, GOLDBERG Y. A Little is Enough: Circumventing Defenses for Distributed Learning[EB/OL]. (2019-02-16)[2023-10-10]. https://arxiv.org/abs/1902.06156. |
[73] | XIE Cong, KOYEJO O, GUPTA I. Fall of Empires: Breaking Byzantine-Tolerant SGD by Inner Product Manipulation[EB/OL](2019-03-10)[2023-10-10]. https://arxiv.org/abs/1903.03936. |
[74] | BHAGOJI A N, CHAKRABORTY S, MITTAL P, et al. Analyzing Federated Learning through Anadversarial Lens[C]// IMLS. Proceedings of the 36th International Conference on Machine Learning. New York: ICML, 2019: 1012-1021. |
[75] | FANG Minghong, CAO Xiaoyu, JIA Jinyuan, et al. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning[C]// USENIX.Proceedingsof the 29th USENIX Conference on Security Symposium. Berkeley: USENIX Association, 2020: 1623-1640. |
[76] | SHEJWALKAR V, HOUMANSADR A. Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated Learning[EB/OL]. (2021-01-01)[2023-10-10]. https://www.researchgate.net/publication/350050756_Manipulating_the_Byzantine_Optimizing_Model_Poisoning_Attacks_and_Defenses_for_Federated_Learning. |
[77] | BAGDASARYAN E, VEIT A, HUA Yiqing, et al. How to Backdoor Federated Learning[EB/OL]. (2019-08-06)[2023-10-10]. https://arxiv.org/abs/1807.00459. |
[78] | BARUCH M, BARUCH G, GOLDBERG Y. A Little is Enough: Circumventing Defenses for Distributed Learning[EB/OL]. (2019-02-16)[2023-10-10]. https://arxiv.org/abs/1902.06156. |
[79] | SUN Ziteng, KAIROUZ P, SURESH A T, et al. Can You Really Backdoor Federated Learning?[EB/OL]. (2019-12-02)[2023-10-10]. https://arxiv.org/abs/1911.07963. |
[80] | XIE Chulin, HUANG Keli, CHEN Pinyu, et al. DBA: Distributed Backdoor Attacks against Federated Learning[EB/OL]. (2023-05-06)[2023-10-10]. https://openreview.net/forum?id=rkgyS0VFvr. |
[81] | GONG Xueluan, CHEN Yanjiao, HUANG Huayang, et al. Coordinated Backdoor Attacks against Federated Learning with Model-Dependent Triggers[J]. IEEE Network, 2022, 36: 84-90. |
[82] | CHEN Yudong, SU Lili, XU Jiaming. Distributed Statistical Machine Learning in Adversarial Settings: Byzantine Gradient Descent[EB/OL]. (2017-12-19)[2023-10-10]. https://dl.acm.org/doi/10.1145/3154503. |
[83] | XIE Cong, KOYEJO O, GUPTA I. Generalized Byzantine-Tolerant SGD[EB/OL]. (2018-05-23)[2023-10-10]. https://arxiv.org/abs/1802.10116. |
[84] | MUÑOZ-GONZÁLEZ L, CO K T, LUPU E C. Byzantine-Robust Federated Machine Learning through Adaptive Model Averaging[EB/OL]. (2019-09-11)[2023-10-10]. https://arxiv.org/abs/1909.05125. |
[85] | FUNG C, YOON C J M, BESCHASTNIKH I. The Limitations of Federated Learning in Sybil Settings[C]// USENIX. Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses. San Sebastian: USENIX Association, 2020: 301-316. |
[86] | YU Lei, WU Lingfei. Towards Byzantine-Resilient Federated Learning via Group-Wise Robust Aggregation[EB/OL]. (2020-11-26)[2023-10-10]. https://doi.org/10.1007/978-3-030-63076-8_6. |
[87] |
JAIN A K. Data Clustering: 50 Years Beyond K-Means[J]. Pattern Recognition Letters, 2010, 31 (8): 651-666.
doi: 10.1016/j.patrec.2009.09.011 URL |
[88] | SINGH A K, BLANCO-JUSTICIA A, DOMINGO-FERRER J, et al. Fair Detection of Poisoning Attacks in Federated Learning[C]// IEEE. Proceedings of the 32nd IEEE International Conference on Tools with Artificial Intelligence. New York: IEEE, 2020: 224-229. |
[89] | WANG Yuao, ZHU Tianqing, CHANG Wenhan, et al. Model Poisoning Defense on Federated Learning: A Validation Based Approach[C]// Springer. Proceedings of the 14th International Conference on Network and System Security. Berlin:Springer, 2020: 207-223. |
[90] |
CHEN Zheyi, TIAN Pu, LIAO Weixian, et al. Zero Knowledge Clustering Based Adversarial Mitigationin Heterogeneous Federated Learning[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1070-1083.
doi: 10.1109/TNSE.2020.3002796 URL |
[91] | XIE Cong, KOYEJO S, GUPTA I. Zeno: Distributed Stochastic Gradient Descent with Suspicion-Based Fault-Tolerance[EB/OL]. (2019-05-18)[2023-10-10]. https://arxiv.org/abs/1805.10032. |
[92] | BAO Xianglin, SU Cheng, XIONG Yan, et al. FLChain: A Blockchain for Auditable Federated Learning with Trust and Incentive[C]// IEEE.Proceedings of the 5th International Conference on Big Data Computing and Communications. New York: IEEE, 2019: 151-159. |
[93] | LI Yuzheng, CHEN Chuan, LIU Nan, et al. A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus[J]. IEEE Network, 2021, 35(1): 234-241. |
[94] |
PENG Zhe, XU Jianliang, CHU Xiaowen, et al. VFChain: Enabling Verifiable and Auditable Federated Learning via Blockchain Systems[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(1): 173-186.
doi: 10.1109/TNSE.2021.3050781 URL |
[95] |
SHAYAN M, FUNG C, YOON C J M, et al. Biscotti: A Blockchain System for Private and Secure Federated Learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(7): 1513-1525.
doi: 10.1109/TPDS.71 URL |
[96] |
QU Youyang, POKHREL S R, GARG S, et al. A Blockchained Federated Learning Framework for Cognitive Computing in Industry 4.0 Networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2964-2973.
doi: 10.1109/TII.9424 URL |
[97] | LIU Yi, PENG Jialiang, KANG Jiawen, et al. A Secure Federated Learning Framework for 5G Networks[J]. IEEE Wireless Communications, 2020, 27(4): 24-31. |
[98] |
BENTOV I, LEE C, MIZRAHI A, et al. Proof of Activity: Extending Bitcoin’s Proof of Work via Proof of Stake[J]. ACM SIGMETRICS Performance Evaluation Review, 2014, 42(3): 34-37.
doi: 10.1145/2695533.2695545 URL |
[99] | MCKEEN F, ALEXANDROVICH I, BERENZON A, et al. Innovative Instructions and Software Model for Isolated Execution[EB/OL]. (2013-06-23)[2023-10-10]. https://doi.org/10.1145/2487726.2488368. |
[100] |
CHEN Yu, LUO Fang, LI Tong, et al. A Training-Integrity Privacy-Preserving Federated Learning Scheme with Trusted Execution Environment[J]. Information Sciences, 2020, 522: 69-79.
doi: 10.1016/j.ins.2020.02.037 URL |
[101] | ZHANG Xiaoli, LI Fengting, ZHANG Zeyu, et al. Enabling Execution Assuranceof Federated Learning at Untrusted Participants[C]// IEEE.Proceedings of the 2020 IEEE Conference on Computer Communications. New York: IEEE, 2020: 1877-1886. |
[102] | ZHAO Yi, XU Ke, WANG Haiyang, et al. Stability-Based Analysis and Defense against Backdoor Attacks on Edge Computing Services[J]. IEEE Network, 2021, 35(1): 163-169. |
[103] | ZHANG Jiale, WU Di, LIU Chengyong, et al. Defending Poisoning Attacks in Federated Learning via Adversarial Training Method[C]// Springer. Proceedings of the 3rd International Conference on Frontiers in Cyber Security. Berlin:Springer, 2020: 83-94. |
[104] | IBITOYE O, SHAFIQ M O, MATRAWY A. DiPSeN: Differentially Private Self-Normalizing Neural Networks For Adversarial Robustness in Federated Learning[EB/OL]. (2021-01-08)[2023-10-10]. https://arxiv.org/abs/2101.03218v1. |
[105] | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and Harnessing Adversarial Examples[EB/OL]. (2015-03-20)[2023-10-10]. https://arxiv.org/abs/1412.6572. |
[106] | SHEJWALKAR V, HOUMANSADR A, KAIROUZ P, et al. Back to the Drawing Board: A Critical Evaluation of Poisoning Attacks on Federated Learning[EB/OL]. (2021-12-13)[2023-10-10]. https://arxiv.org/abs/2108.10241. |
[1] | QIN Zhongyuan, GE Zhenwei, PAN Jingwei, CHEN Liquan. Research on Integrity Measurement Scheme Based on Virtual Trusted Platform Module [J]. Netinfo Security, 2023, 23(2): 11-18. |
[2] | LI Tong, REN Shuai, WANG Gang, MENG Qingyu. Cloud-edge-device Collaborative Integrity Verification Scheme Based on Chameleon Authentication Tree for Streaming Data [J]. Netinfo Security, 2022, 22(1): 37-45. |
[3] | SHEN Zhuowei, GAO Peng, XU Xinyu. Design of DDS Secure Communication Middleware Based on Security Negotiation [J]. Netinfo Security, 2021, 21(6): 19-25. |
[4] | CHU Zhiqiang, WU Jiying, XU Lei, DU Cong. A Distributed Off-chain Storage Framework Based on Blockchain [J]. Netinfo Security, 2021, 21(2): 87-93. |
[5] | ZHANG Fucheng, FU Shaojing, XIA Jing, LUO Yuchuan. GlusterFS-based Distributed Data Integrity Verification System [J]. Netinfo Security, 2021, 21(1): 72-79. |
[6] | YOU Weijing, LIU Limin, MA Yue, HAN Dong. An Intel SGX-based Proof of Encryption in Clouds [J]. Netinfo Security, 2020, 20(12): 1-8. |
[7] | LI Xiaoran, HAO Rong, YU Jia. Certificateless Provable Data Possession with Data Uploading Control [J]. Netinfo Security, 2020, 20(1): 83-88. |
[8] | Juru HAN, Zhi YANG, Zhaoxuan JI, Cunqing MA. Design and Implementation of File Encryption System Based on Wechat Mini Program [J]. Netinfo Security, 2019, 19(9): 81-85. |
[9] | Ronglei HU, Wenjing LI, Hua JIANG, Xinran ZHANG. Certificateless Aggregation Signcryption Scheme Based on Discrete Logarithm [J]. Netinfo Security, 2019, 19(7): 42-49. |
[10] | Lin HOU, Mingjie LI, Jian XU, Fucai ZHOU. Distributed Dynamic Provable Data Possession Model Based on Flexible Length-based Authenticated Skip List [J]. Netinfo Security, 2019, 19(7): 67-74. |
[11] | Bilin SHAO, Xiaojun LI, Genqing BIAN, Yu ZHAO. A Survey on Data Integrity Auditing Technology in Cloud Storage [J]. Netinfo Security, 2019, 19(6): 28-36. |
[12] | Ruiying CHEN, Zemao CHEN, Hao WANG. Design and Optimization of Security Monitoring and Controlling Protocol in Industrial Control Systems [J]. Netinfo Security, 2019, 19(2): 60-69. |
[13] | Zhe LI, Yiliang HAN, Yu LI. A Key Exchange Cryptosystem Based on Polar Codes [J]. Netinfo Security, 2019, 19(10): 84-90. |
[14] | Jianli BAI, Xiaoran LI, Rong HAO, Jia YU. Algebraic Signature-based Secure Auditing and Deduplication Scheme with Ownership Dynamic Modification in Cloud Environment [J]. Netinfo Security, 2018, 18(8): 50-55. |
[15] | Xiuqing LU, Hequn XIAN. A Big Data Integrity Auditing Scheme Based on User Authorization in Cloud Storage [J]. Netinfo Security, 2018, 18(4): 32-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||