[1] |
MA Aiping. AI Training Meets Privacy Problem Federal Learning Opens up Data Island in This Way[N]. Science and Technology Daily, 2019-11-19(5).
|
|
马爱平. AI训练遇隐私难题联邦学习这样打通数据孤岛[N]. 科技日报, 2019-11-19(5).
|
[2] |
WANG Yakun. Survey of Federated Learning Technology for Data Sharing and Exchange[J]. Unmanned Systems Technology, 2019, 2(6):58-62.
|
|
王亚珅. 面向数据共享交换的联邦学习技术发展综述[J]. 无人系统技术, 2019, 2(6):58-62.
|
[3] |
WANG Rong, MA Chunguang, WU Peng. Intrusion Detection Method Based on Federal Learning and Convolutional Neural Network[J]. Netinfo Security, 2020, 20(4):47-54.
|
|
王蓉, 马春光, 武朋. 基于联邦学习和卷积神经网络的入侵检测方法[J]. 信息网络安全, 2020, 20(4):47-54.
|
[4] |
YANG Qiang. Federal Learning: the Last Mile of AI[EB/OL]. http://kns.cnki.net/kcms/detail/23.1538.tp.20200317.1133.002.html, 2020-05-20.
|
|
杨强. 联邦学习:人工智能的最后一公里[EB/OL]. http://kns.cnki.net/kcms/detail/23.1538.tp.20200317.1133.002.html, 2020-05-20.
|
[5] |
PAN Biying, QIU Haihua, ZHANG Jialun. Research on Federated Machine Learning with Different Data Distribution[C]// TD Industry Association. Proceedings of 5G Network Innovation Seminar (2019), August 15, 2019, Beijing, China. Beijing: Mobile Communications, 2019: 271-276.
|
[6] |
PAN Rusheng, HAN Dongming, PAN Jiacheng, et al. Visualization of Federated Learning: Challenges and Framework[J]. Journal of Computer-aided Design & Computer Graphics, 2020, 32(4):513-519.
|
|
潘如晟, 韩东明, 潘嘉铖, 等. 联邦学习可视化:挑战与框架[J]. 计算机辅助设计与图形学学报, 2020, 32(4):513-519.
|
[7] |
HUANG Zhenhao. Design and Implementation of Network Intrusion Detection[J]. Bulletin of Science and Technology, 2019, 35(12):82-86.
|
|
黄振昊. 网络入侵检测的设计和实现方案[J]. 科技通报, 2019, 35(12):82-86.
|
[8] |
WANG Yan. Design of Network Intrusion Data Detection System Based on Big Data Analysis[J]. Computer Knowledge and Technology, 2019, 15(19):56-58.
|
|
王岩. 基于大数据分析的网络入侵数据检测系统设计[J]. 电脑知识与技术, 2019, 15(19):56-58.
|
[9] |
ZHANG Weihua. Design and Development of Network Intrusion Testing System[J]. Network Security Technology & Application, 2020, 20(1):11-14.
|
|
张卫华. 网络入侵测试系统的设计与开发[J]. 网络安全技术与应用, 2020, 20(1):11-14.
|
[10] |
HU Jian, SU Yongdong, LI Chao, et al. Research on Intrusion Detection System Based on Machine Learning[J]. Information & communication, 2019, 26(11):163-164.
|
|
胡健, 苏永东, 李超, 等. 基于机器学习的入侵检测系统探究[J]. 信息通信, 2019, 26(11):163-164.
|
[11] |
YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated Machine Learning: Concept and Applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2):1-19.
|
[12] |
CHAUHAN H, KUMAR V, PUNDIR S, et al. A Comparative Study of Classification Techniques for Intrusion Detection[C]// IEEE. 2013 International Symposium on Computational and Business Intelligence,August 24-26,2013,New Delhi, India. New York: IEEE, 2013: 40-43.
|
[13] |
MULAY S A, DEVALE P R, GARJE G V. Intrusion Detection System Using Support Vector Machine and Decision Tree[J]. International Journal of Computer Applications, 2010, 3(3):40-43.
doi: 10.5120/ijca
URL
|
[14] |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Federated Learning of Deep Networks Using Model Averaging[EB/OL]. https://arxiv.org/pdf/1602.05629v1.pdf, 2016-02-17.
|
[15] |
GUO Chuxu, SHI Yong, XUE Zhi. Port Scan Intrusion Detection Based on Machine Learning[J]. Communications Technology, 2020, 53(2):421-426.
|
|
郭楚栩, 施勇, 薛质. 基于机器学习的端口扫描入侵检测[J]. 通信技术, 2020, 53(2):421-426.
|
[16] |
YANG Dongxiao, XIONG Ying, CHE Bichen. Network Intrusion Detection and Prevention[M]. Beijing: Tsinghua University Press, 2020.
|
|
杨东晓, 熊瑛, 车碧琛. 入侵检测与入侵防御[M]. 北京: 清华大学出版社, 2020.
|