[1] |
DENG Jia, DONG Wei, SOCHER R, et al. Imagenet: A Large-scale Hierarchical Image Database[C]//IEEE. IEEE-computer-society Conference on Computer Vision and Pattern Recognition Workshops, June 20-25, 2009, Miami, FL, USA. New York: IEEE, 2009: 248-255.
|
[2] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient Learning of Deep Networks from Decentralized Data[C]//PMLR. 20th International Conference on Artificial Intelligence and Statistics, April 20-22, 2017, Fort Lauderdale, FL, USA. Brookline: Microtome Publishing, 2017: 1273-1282.
|
[3] |
MELIS L, SONG Congzheng, CRISTOFARO E D, et al. Exploiting Unintended Feature Leakage in Collaborative Learning[C]//IEEE. 40th IEEE Symposium on Security and Privacy (SP), May 19-23, 2019, San Francisco, CA, USA. New York: IEEE, 2019: 691-706.
|
[4] |
WANG Hongyi, SREENIVASAN K, RAJPUT S, et al. Attack of the Tails: Yes, You Really Can Backdoor Federated Learning[J]. NIPS, 2020, 33(5):16070-16084.
|
[5] |
RIVEST R L, ADLEMAN L, DERTOUZOS M L. On Data Banks and Privacy Homomorphisms[J]. Foundations of Secure Computation, 1978, 4(11):169-180.
|
[6] |
LIU Yang, KANG Yan, XING Chaoping, et al. A Secure Federated Transfer Learning Framework[J]. IEEE Intelligent Systems, 2020, 35(4):70-82.
doi: 10.1109/MIS.9670
URL
|
[7] |
DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating Noise to Sensitivity in Private Data Analysis[C]//Springer. 3rd Theory of Cryptography Conference, March 4-7, 2006, New York, NY, USA. Berlin: Springer-Verlag, 2006: 265-284.
|
[8] |
JAYARAMAN B, EVANS D. When Relaxations Go Bad: “Differentially- private”Machine Learning[EB/OL]. https://arxiv.org/abs/1902.08874v2, 2019-08-12.
|
[9] |
BLANCHARD P, EL MHAMDI E M, GUERRAOUI R, et al. Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent[C]//NIPS. 31st Annual Conference on Neural Information Processing Systems, December 4-9, 2017, Long Beach, CA, USA. California: NIPS, 2017: 118-128.
|
[10] |
FANG Minghong, CAO Xiaoyu, JIA Jinyuan, et al. Local Model Poisoning Attacks to Byzantine-robust Federated Learning[C]//USENIX. 29th USENIX Security Symposium, August 12-14, 2020, Boston, MA, USA. Berkeley: USENIX ASSOC, 2020: 1605-1622.
|
[11] |
KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and Open Problems in Federated Learning[J]. Foundations and Trends in Machine Learning, 2021, 14(1-2):1-210.
doi: 10.1561/2200000083
URL
|
[12] |
HE Chaoyang, LI Songze, SO J, et al. Fedml: A Research Library and Benchmark for Federated Machine Learning[EB/OL]. https://arxiv.org/abs/2007.13518, 2020-11-08.
|
[13] |
KINGMA D P, WELLING M. Auto-encoding Variational Bayes[EB/OL]. https://arxiv.org/abs/1312.6114, 2014-05-01.
|
[14] |
XIE Chulin, HUANG Keli, CHEN Pinyu, et al. Dba: Distributed Backdoor Attacks against Federated Learning[C]// ICLR. 7th International Conference on Learning Representations, May 6-9, 2019, New Orleans, LA, USA. New York: ICLR, 2019: 142-151.
|
[15] |
LIU Ziwei, LUO Ping, WANG Xiaogang, et al. Large-scale Celebfaces Attributes (Celeba) Dataset[EB/OL]. http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, 2021-09-10.
|
[16] |
ROTHE R, TIMOFTE R, VAN GOOL L. Deep Expectation of Real and Apparent Age from a Single Image without Facial Landmarks[J]. International Journal of Computer Vision, 2018, 126(2):144-157.
doi: 10.1007/s11263-016-0940-3
URL
|
[17] |
VAHDAT A, KAUTZ J. Nvae: A Deep Hierarchical Variational Autoencoder[EB/OL]. https://arxiv.org/abs/2007.03898, 2021-01-08.
|