Netinfo Security ›› 2020, Vol. 20 ›› Issue (5): 47-56.doi: 10.3969/j.issn.1671-1122.2020.05.006
Previous Articles Next Articles
PENG Zhonglian1,2, WAN Wei1,*(), JING Tao3, WEI Jinxia1
Received:
2020-02-20
Online:
2020-05-10
Published:
2020-06-05
Contact:
Wei WAN
E-mail:anquanip@cnic.cn
CLC Number:
PENG Zhonglian, WAN Wei, JING Tao, WEI Jinxia. Research on Intrusion Detection Method Based on Modified CGANs[J]. Netinfo Security, 2020, 20(5): 47-56.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2020.05.006
攻击类型 | 分类 | 总计 |
---|---|---|
DoS | back, land, neptune, pod, smurf, teardrop, mailbomb, processtable, udpstorm,apache2, worm | 11 |
Probe | Satan, ipsweep, nmap, portsweep, mscan, saint | 6 |
R2L | guess_passwd, ftp_write, imap, phf, multihop, warezmaster, xlock, xsnoop, snmpguess, snmpgetattack, httptunnel, sendmail, named, warezclient, spy | 15 |
U2R | buffer_overflow, loadmodule, rootkit, perl, slotbacks, xterm, ps | 7 |
总计 | 39 |
类别 | KDDTrain+_20Percent | KDDTest+ | KDDTest-21 | |||
---|---|---|---|---|---|---|
攻击类型 | 数量 | 攻击类型 | 数量 | 攻击类型 | 数量 | |
Normal | normal | 13449 | normal | 9711 | normal | 2152 |
合计 | 13449 | 9711 | 2152 | |||
Probe | ipsweep satan portsweep nmap | 710 691 587 301 | ipsweep satan portsweep nmap saint mscan | 141 735 157 73 319 996 | ipsweep satan portsweep nmap saint mscan | 141 727 156 73 309 996 |
合计 | 2289 | 2421 | 2402 | |||
DoS | neptune smurf back teardrop pod land | 8282 529 196 188 38 1 | neptune smurf back teardrop pod land apache2 mailbomb processtable udpstorm | 4657 665 359 12 41 7 737 293 685 2 | neptune smurf back teardrop pod land apache2 mailbomb processtable udpstorm | 1579 627 359 12 41 7 737 293 685 2 |
合计 | 9234 | 7458 | 4342 | |||
U2R | buffer_over?ow rootkit loadmodule | 6 4 1 | buffer_over?ow rootkit loadmodule perl httptunnel ps sqlattack xterm | 20 13 2 2 133 15 2 13 | buffer_over?ow rootkit loadmodule perl httptunnel ps sqlattack xterm | 20 13 2 2 133 15 2 13 |
合计 | 11 | 200 | 200 | |||
R2L | guess_passwd warezmaster imap multihop phf ftp_write spy warezclient | 10 7 5 2 2 1 1 181 | guess_passwd warezmaster imap multihop phf ftp_write named sendmail xlock xsnoop worm snmpgetattack snmpguess | 1231 944 1 18 2 3 17 14 9 4 2 178 331 | guess_passwd warezmaster imap multihop phf ftp_write named sendmail xlock xsnoop worm snmpgetattack snmpguess | 1231 944 1 18 2 3 17 14 9 4 2 178 331 |
合计 | 209 | 2754 | 2754 | |||
总计 | 25192 | 22544 | 11850 |
模型 | Normal | Probe | DoS | U2R | R2L | Accuracy | Recall | Precision | F1- measure | FPR |
---|---|---|---|---|---|---|---|---|---|---|
ROS-DNN | 92.61 | 56.26 | 80.32 | 6.00 | 12.75 | 78.26 | 67.41 | 92.34 | 77.93 | 7.39 |
SMOTE-DNN | 96.59 | 56.75 | 82.19 | 11.00 | 10.93 | 81.16 | 69.48 | 96.42 | 80.76 | 3.41 |
ADASYN-DNN | 96.43 | 59.81 | 83.28 | 8.00 | 9.84 | 80.10 | 67.74 | 96.16 | 79.49 | 3.57 |
CGANs-DNN | 96.76 | 78.88 | 88.67 | 11.00 | 46.71 | 87.98 | 79.46 | 96.98 | 88.27 | 2.33 |
模型 | Normal | Probe | DoS | U2R | R2L | Accuracy | Recall | Precision | F1- measure | FPR |
---|---|---|---|---|---|---|---|---|---|---|
ROS-DNN | 85.83 | 65.36 | 74.14 | 5.50 | 10.02 | 63.43 | 58.46 | 94.89 | 72.35 | 14.17 |
SMOTE-DNN | 86.76 | 60.99 | 66.86 | 12.00 | 14.45 | 65.34 | 60.59 | 95.37 | 74.10 | 13.24 |
ADASYN-DNN | 67.98 | 54.29 | 67.94 | 8.00 | 11.58 | 57.76 | 55.50 | 88.65 | 68.26 | 32.02 |
CGANs-DNN | 89.04 | 80.19 | 78.27 | 11.33 | 25.17 | 78.43 | 75.84 | 96.63 | 84.12 | 11.22 |
模型 | Normal | Probe | DoS | U2R | R2L | Accuracy | Recall | Precision | F1- measure | FPR |
---|---|---|---|---|---|---|---|---|---|---|
KNN | 91.68 | 60.4 | 81.25 | 3.52 | 3.71 | 75.11 | 65.29 | 93.36 | 74.18 | 7.13 |
SVM | 92.12 | 60.71 | 74.15 | 0.00 | 0.00 | 72.68 | 57.13 | 90.36 | 70.97 | 7.21 |
RF | 97.37 | 58.53 | 80.64 | 0.54 | 7.25 | 75.61 | 60.19 | 96.14 | 72.32 | 2.54 |
DNN | 96.12 | 67.30 | 84.40 | 2.61 | 14.26 | 80.44 | 68.47 | 95.65 | 76.10 | 3.79 |
CGANs-DNN | 97.16 | 76.97 | 87.25 | 11.00 | 46.42 | 86.98 | 78.43 | 97.79 | 88.27 | 2.68 |
模型 | Normal | Probe | DoS | U2R | R2L | Accuracy | Recall | Precision | F1- measure | FPR |
---|---|---|---|---|---|---|---|---|---|---|
KNN | 67.49 | 60.08 | 69.31 | 3.51 | 3.16 | 56.01 | 52.69 | 88.41 | 65.13 | 30.91 |
SVM | 68.36 | 60.44 | 57.89 | 0.00 | 0.00 | 46.88 | 41.64 | 84.15 | 58.17 | 32.14 |
RF | 88.44 | 60.48 | 65.88 | 0.54 | 10.82 | 56.94 | 50.84 | 94.98 | 64.89 | 11.44 |
DNN | 85.99 | 67.26 | 64.17 | 4.60 | 14.02 | 61.16 | 54.24 | 94.19 | 70.88 | 13.79 |
CGANs-DNN | 88.14 | 80.89 | 78.82 | 12.50 | 26.17 | 73.43 | 76.86 | 97.20 | 84.92 | 12.66 |
[1] | ZHANG Huanguo, MU Yi . Cyberspace Security[J]. China Communications, 2016,11(2):68-69. |
[2] | ALI MH, MOHAMMED B A D A, ISMAIL M A B , et al. A New Intrusion Detection System Based on Fast Learning Network and Particle Swarm Optimization[J]. IEEE Access, 2018,18(6):20255-20261. |
[3] | TIAN Yingjie, MIRZABAGHERI M, BAMAKAN S M H , et al. Ramp Loss One-Class Support Vector Machine; A Robust and Effective Approach to Anomaly Detection Problems[J]. Neurocomputing, 2018,310(3):223-235. |
[4] | GANESHAN R, PAUL R S . I-AHSDT: Intrusion Detection Using Adaptive Dynamic Directive Operative Fractional Lion Clustering and Hyperbolic Secant-Based Decision Tree Classifier[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2018,6(30):887-910. |
[5] | SERPEN G , AGHAEIE. Host-Based Misuse Intrusion Detection Using PCA Feature Extraction and KNN Classification Algorithms[J]. Intelligent Data Analysis, 2018,22(5):1101-1114. |
[6] | LI Deng, DONG Yu . Deep Learning: Methods and Applications[J]. Foundations and Trends in Signal Processing, 2014,7(3-4):197-387. |
[7] | WONGSUPHASAWAT K, SMILKOV D, WEXLER J , et al. Visualizing Dataflow Graphs of Deep Learning Models in Tensor Flow[J]. IEEE Transactions on Visualization and Computer Graphics, 2018,24(1):1-24. |
[8] | MALAIYA R K, KWON D, KIM J , et al. An Empirical Evaluation of Deep Learning for Network Anomaly Detection[J]. IEEE Access, 2018,18(7):140806-140817. |
[9] | LI Chaopeng, WANG Jinlin, YE Xiaozhou . Using a Recurrent Neural Network and Restricted Boltzmann Machines for Malicious Traffic Detection[J]. Neuro Quantology, 2018,16(5):823-831. |
[10] | ZHENG Wang . Deep Learning Based Intrusion Detection with Adversaries[J]. IEEE Access, 2018,18(6):38367-38384. |
[11] | XIN Yang, KONG Lingshuang, LIU Zhi , et al. Machine Learning and Deep Learning Methods for Cybersecurity[J]. IEEE Access, 2018,18(6):35365-35381. |
[12] | SEO E, SONG H M, KIM H K . GIDS: GAN based Intrusion Detection System for In-Vehicle Network [C]//IEEE. 16th Annual Conference on Privacy, Security and Trust (PST), August 28-30, 2018, Belfast, UK. New York: IEEE, 2018: 1-6. |
[13] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M et al. Generative Adversarial Nets[EB/OL]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.747.1316&rep=rep1&type=pdf, 2014-10-15. |
[14] | GULRAJANI I, AHMED F, ARJOVSKY M , et al. Improved Training of Wasserstein GANs[EB/OL]. https://arxiv.org/pdf/1704.00028.pdf, 2017-10-15. |
[15] | DHANABAL L, SHAN THARAJAH . A Study on NSL-KDD Dataset for Intrusion Detection System Based on Classification Algorithms[EB/OL]. https://ijarcce.com/upload/2015/june-15/IJARCCE%2096.pdf, 2015-10-15. |
[16] | WANG Xiaosen, HE Kun, SONG Chuanbiao , et al. AT-GAN: A Generative Attack Model for Adversarial Transferring on Generative Adversarial Nets[EB/OL]. https://arxiv.org/pdf/1904.07793.pdf, 2020-1-15. |
[17] | HU Weiwei, TAN Ying . Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN[EB/OL]. https://arxiv.org/pdf/1702.05983.pdf, 2017-10-15. |
[18] | MUHAMMAD U, MUHAMMAD A, SIDDIQUE L , et al. Generative Adversarial Networks For Launching and Thwarting Adversarial Attacks on Network Intrusion Detection Systems [C]//IEEE. 15th International Wireless Communications & Mobile Computing Conference (IWCMC), June 24-28, 2019, Tangier, Morocco. New York: IEEE, 2019: 78-83. |
[19] | MA Tao, WANG Fen, CHENG Jianjun , et al. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks[J]. Sensors, 2016,16(10):1701-1723. |
[20] | TANG T A, MHAMDI L, MCLERNON D , et al. Deep Recurrent Neural Network for Intrusion Detection in SDN-based Networks [C]//IEEE. 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), June 25-29, 2018, Montreal, QC, Canada. New York: IEEE, 2018: 202-206. |
[21] | MUNA A H, MOUSTAFA N, SITNIKOVA E , et al. Identification of Malicious Activities in Industrial Internet of Thingsbased on Deep Learning Models[J]. Journal of Information Security and Applications, 2018,41:1-11. |
[22] | GUILLAUME L, FERNANDO N, CHRISTOS A . Imbalanced-Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine learning[EB/OL]. https://hal.inria.fr/hal-01516244/document, 2017-10-15. |
[23] | CHAWLA N V, BOWYER K W, HALL L O , et al. SMOTE: Synthetic Minority Over-Sampling Technique[J]. Journal of Artificial Intelligence Research, 2002,16(1):321-357. |
[24] | HE Haibo, BAI Yang, GARCIA E A , et al. ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning [C]//IEEE. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), June 1-8, 2008, Hong Kong, China. New York: IEEE, 2018: 1322-1328. |
[1] | LI Qiao, LONG Chun, WEI Jinxia, ZHAO Jing. A Hybrid Model of Intrusion Detection Based on LMDR and CNN [J]. Netinfo Security, 2020, 20(9): 117-121. |
[2] | JIANG Nan, CUI Yaohui, WANG Jian, WU Jinchao. Context-based Attack Scenario Reconstruction Model for IDS Alarms [J]. Netinfo Security, 2020, 20(7): 1-10. |
[3] | ZHANG Xiaoyu, WANG Huazhong. Intrusion Detection of ICS Based on Improved Border-SMOTE for Unbalance Data [J]. Netinfo Security, 2020, 20(7): 70-76. |
[4] | Rong WANG, Chunguang MA, Peng WU. An Intrusion Detection Method Based on Federated Learning and Convolutional Neural Network [J]. Netinfo Security, 2020, 20(4): 47-54. |
[5] | Wenhua LUO, Caidian XU. Network Intrusion Detection Based on Improved MajorClust Clustering [J]. Netinfo Security, 2020, 20(2): 14-21. |
[6] | Jian KANG, Jie WANG, Zhengxu LI, Guangda ZHANG. A Model for Anomaly Intrusion Detection with Different Feature Extraction Strategies in IoT [J]. Netinfo Security, 2019, 19(9): 21-25. |
[7] | Wenying FENG, Xiaobo GUO, Yuanye HE, Cong XUE. Intrusion Detection Model Based on Feedforward Neural Network [J]. Netinfo Security, 2019, 19(9): 101-105. |
[8] | Xuli RAO, Pengna XU, Zhide CHEN, Li XU. Network Intrusion Detection with Incomplete Information Based on Deep Learning [J]. Netinfo Security, 2019, 19(6): 53-60. |
[9] | Chunguang MA, Yaoyao GUO, Peng WU, Haibo LIU. Review of Image Enhancement Based on Generative Adversarial Networks [J]. Netinfo Security, 2019, 19(5): 10-12. |
[10] | Jinghao LIU, Siping MAO, Xiaomei FU. Intrusion Detection Model Based on ICA Algorithm and Deep Neural Network [J]. Netinfo Security, 2019, 19(3): 1-10. |
[11] | Hong CHEN, Yue XIAO, Chenglong XIAO, Jianhu CHEN. The Intrusion Detection Method of SMOTE Algorithm with Maximum Dissimilarity Coefficient Density [J]. Netinfo Security, 2019, 19(3): 61-71. |
[12] | Zheng TIAN, Shu LI, Yizhen SUN, Xi LI. Industrial Control System Intrusion Detection Model Based on S7 Protocol [J]. Netinfo Security, 2019, 19(11): 8-13. |
[13] | Yang ZHANG, Yuangang YAO. Research on Network Intrusion Detection Based on Xgboost [J]. Netinfo Security, 2018, 18(9): 102-105. |
[14] | Gelin ZHANG, Yong LI. Non-negative Matrix Factorization Optimization and Its Application in Network Intrusion Detection [J]. Netinfo Security, 2018, 18(8): 73-78. |
[15] | Shuning WEI, Xingru CHEN, Yong JIAO, Jin WANG. Research on the Application of AR-OSELM Algorithm in Network Intrusion Detection [J]. Netinfo Security, 2018, 18(6): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||