Netinfo Security ›› 2019, Vol. 19 ›› Issue (7): 8-24.doi: 10.3969/j.issn.1671-1122.2019.07.002
• Orginal Article • Previous Articles Next Articles
Min ZHENG1(), Hong WANG1,2, Hong LIU1, Chong TAN1
Received:
2019-04-15
Online:
2019-07-19
Published:
2020-05-11
CLC Number:
Min ZHENG, Hong WANG, Hong LIU, Chong TAN. Survey on Consensus Algorithms of Blockchain[J]. Netinfo Security, 2019, 19(7): 8-24.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2019.07.002
算法 | 提出时间 | 容错类型 | 应用 |
---|---|---|---|
VR | 1988 | CFT | Berkeley DB |
Paxos | 1990 | CFT | Chubby |
PBFT | 1999 | BFT (容错率<1/3) | Hyperledger v0.6 |
Query/Update | 2005 | BFT (容错率<1/5) | — |
Hybrid/Quorum | 2006 | BFT (容错率<1/3) | — |
Zyzzava | 2007 | BFT (容错率<1/3) | — |
OBFT | 2013 | BFT (容错率<1/3) | — |
RBFT | 2013 | BFT (容错率<1/3) | Hyperledger Indy |
Raft | 2014 | CFT | etcd |
Tangaroa | 2014 | BFT (容错率<1/3) | — |
HoneyBadger BFT | 2016 | BFT (容错率<1/3) | POA Network |
共识 算法 | 核心思想 | 优点 | 缺点 |
---|---|---|---|
PoW | 拥有最高算力的节点易获得新区块的记账权和区块奖励,再由全网节点验证区块的正确性 | 算法简单,可操作性强,节点自由加入或者退出,可扩展性强 | 严重浪费电力等资源,依赖专业挖矿硬件资源,算力集中在几大矿场之间,有中心化风险且效率低下,交易吞吐量小 |
PoS | 拥有最高权益的节点易获得新区块的记账权和区块奖励,再由全网节点验证区块的正确性 | 降低了PoW机制算力的浪费,节点不再依赖专业挖矿硬件资源,节点自由加入或者退出,可扩展性强 | 需要完善解决PoS机制存在的“无利害关系”问题,吞吐量小,一些平台手续费高 |
DPoS | 由拥有权益的节点选出前N个超级节点作为新区块的记账节点,这些受理人轮流获得记账权和区块奖励 | 高吞吐量,更快地确认时间,降低能源损耗,节省了区块确认时间,减少了交易延迟,吞吐量得到极大提高,节点自由加入或者退出,可扩展性强 | 超级节点投票麻烦,投票期间需要锁定代币,不利于激发普通节点参与,固定数量超级节点的竞选规则令人担忧,去中心化的实现存在争议 |
PBFT | 主节点排序请求,从节点响应请求,多数节点响应结果为最终结果 | 共识结果的一致性和正确性程度高,确认时间快 | 算法复杂度较高,通信量大;当节点数量过多时,运行效率较低 |
算法名称 | 虚拟挖矿 | 混合算法 | 模拟领导者选举 | 最长链规则 | 算法特性 |
---|---|---|---|---|---|
PoS(Peercoin) | 是 | PoW?PoS | 权益竞争 | 是 | 权益代替算力竞争 |
Tendermint | 是 | PoS?BFT | 可证的随机函数 | 是 | 确定性共识 |
Algorand | 是 | PoS?BFT | 可证的随机函数 | 是 | 在同步时可保证安全性和活性 |
Casper FFG | 否 | PoS?BFT | PoW哈希解谜竞争 | 是 | 验证者集合借助BFT算法 |
Ouroboros | 是 | PoS | 掷硬币协议 | 是 | 严格安全性保障 |
Proof of Luck/Elapsed Time | 是 | 否 | Intel-SGX执行的可信任随机函数 | 是 | 无资源消耗 |
BFT-DPoS | 是 | PoS?BFT | 选举后轮流 | 是 | 确定性的共识 |
[1] | The Sate Council.the 13th Five-Year Plan for National Informa- tionization[EB/OL]. 2016-12-27. |
国务院.“十三五”国家信息化规划[EB/OL]. . | |
[2] | NAKAMOTO S.Bitcoin: A Peer-to-Peer Electronic Cash System[EB/OL]. , 2019-1-7. |
[3] | YUAN Yong, WANG Fei Yue.Blockchain: the State of the Art and Future Trends[J]. Acta Automatica Sinica, 2016, 42(4): 481-494. |
袁勇,王飞跃.区块链技术发展现状与展望[J].软件学报,2016,42(4):481-494. | |
[4] | EVANS D S. Economic Aspects of Bitcoin and Other Decentralized Public-Ledger Currency Platforms[EB/OL]. , 2014-1-15. |
[5] | VUKOLIĆ M.The Quest for Scalable Blockchain Fabric: Proof-of-Work Vs. BFT Replication[C]// IFIP. International Workshop on Open Problems in Network Security, October 29, 2015, Zurich, Switzerland. Cham: Springer, 2015: 112-125. |
[6] | VISA.Annual Report 2017 [EB/OL]. , 2017-12-26. |
[7] | LAMPORT L.The Part-Time Parliament[J]. ACM Transactions on Computer Systems, 1998, 16(5): 144-169. |
[8] | LAMPORT L.Paxos Made Simple[J]. ACM SIGACT News, 2001, 32(4): 18-25. |
[9] | SUNNY K, SCOTT N. PPcoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake[EB/OL]. ,2012-8-19. |
[10] | LARIMER D. Delegated Proof of Stake[EB/OL]. , 2018-8-29. |
[11] | DONET J A D, PÉREZ-Sola C, HERRERA J J. The Bitcoin P2P Network[C]//Springer. International Conference on Financial Cryptography and Data Security. March 7, 2014, Christ Church, Barbados. Berlin: Springer, 2014: 87-102. |
[12] | DEMERS A, GREENE D, HOUSER C, et al.Epidemic Algorithms for Replicated Database Maintenance[J]. ACM SIGOPS Operating Systems Review, 1988, 22(1): 8-32. |
[13] | MA Chungguang, AN Jing, BI Wei.et al.Smart Contract in Blockchain[J]. Netinfo Security, 2018, 18(11): 8-17. |
马春光,安婧,毕伟,等.区块链中的智能合约[J].信息网络安全,2018,18(11):8-17. | |
[14] | TSCHORSCH F, SCHEUERMANN B.Bitcoin and Beyond: A Technical Survey on Decentralized Digital Currencies[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 2084-2123. |
[15] | LAMPORT L, SHOSTAK R, PEASE M.The Byzantine Generals Problem[J]. ACM Transactions on Programming Languages and Systems, 1982, 4(3): 382-401. |
[16] | FAN Jie, YI Le Tian, SHU Ji Wu.Research on the Technologies of Byzantine System[J]. Journal of Software, 2013, 24(6): 1346-1360. |
范捷,易乐天,舒继武.拜占庭系统技术研究综述[J].软件学报,2013,24(6):1346-1360. | |
[17] | FISCHER M J, LYNCH N A, PATERSON M S.Impossibility of Distributed Consensus with One Faulty Process[J]. Journal of the ACM, 1985, 32(2): 374-382. |
[18] | GILBERT S, LYNCH N.Brewer’s Conjecture and the Feasibility of Consistent Available Partition-Tolerant Web Services[J]. ACM SIGACT News, 2002, 33(2): 51-59. |
[19] | LAMPORt L.Proving the Correctness of Multiprocess Programs[J]. IEEE Transactions on Software Engineering, 1977, 3(2): 125-143. |
[20] | OKI B M, LISKOV B H.Viewstamped Replication: A New Primary Copy Method to Support Highly-Available Distributed Systems[C]// ACM. the Seventh Annual ACM Symposium on Principles of distributed computing. August 15-17, 1988, Toronto, Ontario, Canada. NewYork: ACM, 1988: 8-17. |
[21] | LAMPORT L. My Writings [EB/OL]. , 2019-3-11 |
[22] | CHANDRA T D, GRIESEMER R, REDSTONE J.Paxos made live: An engineering perspective[C]// ACM. the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC 2007, August 12-15, 2007, Portland, Oregon, USA. NewYork: ACM, 2007: 398-407. |
[23] | LAMPORT L, MASSA M.Cheap paxos[C]//IEEE. International Conference on Dependable Systems and Networks, June 28-July 1, 2004, Florence, Italy. New York: IEEE, 2004: 307-314. |
[24] | LAMPSON B W.How to Build a Highly Available System Using Consensus[C]//Springer. International Workshop on Distributed Algorithms, October 9-11, 1996, Bologna, Italy. Berlin, Heidelberg: Springer, 1996: 1-17. |
[25] | ONGARO D, OUSTERHOUT J K.In Search of an Understand-able Consensus Algorithm[C]//USENIX. USENIX Annual Technical Conference, June 19-20, 2014, Philadelphia, PA, USA. Berkeley: USENIX Association, 2014: 305-319. |
[26] | CASTRO M, LISKOV B.Practical Byzantine Fault Tolerance[C]//USENIX. Proceedings of the Third Symposium on Operating Systems Design and Implementation, February 22-25, 1999, New Orleans, Louisiana, USA. Berkeley: USENIX Association, 1999: 173-186. |
[27] | CASTROM, LISKOV B.Practical Byzantine Fault Tolerance and Proactive Recovery[J]. ACM Transactions on Computer Systems (TOCS), 2002, 20(4): 398-461. |
[28] | GARAY J A, MOSES Y.Fully Polynomial Byzantine Agreement for Processors in Rounds[J]. SIAM Journal on Computing, 1998, 27(1): 247-290. |
[29] | MALKHI D, REITER M.Unreliable Intrusion Detection in Distributed Computations[C]//IEEE. Proceedings 10th Computer Security Foundations Workshop, June 10-12, 1997, Rockport, MA, USA. New York: IEEE, 1997: 116-124. |
[30] | SCHNEIDER F B.Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial[J]. ACM Computing Surveys (CSUR), 1990, 22(4): 299-319. |
[31] | Abd-El-Malek M, Ganger G R, Goodson G R, et al. Fault-scalable Byzantine Fault-tolerant Services[J]. ACM SIGOPS Operating Systems Review, 2005, 39(5): 59-74. |
[32] | COWLING J, MYERS D, LISKOV B, et al.HQ replication: A Hybrid Quorum Protocol for Byzantine Fault Tolerance[C]//USENIX. Proceedings of the 7th Symposium on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006: 177-190. |
[33] | KOTLA R, ALVISI L, DAHLIN M, et al.Zyzava: Speculative Byzantine Fault Tolerance[J]. SIGOPS Oper. Syst. Rev, 2007, 41(6): 45-58. |
[34] | SHOKER A, BAHSOUN J P, YABANDEH M.Improving Independence of Failures in BFT[C]//IEEE. 2013 IEEE 12th International Symposium on Network Computing and Applications. August 22-24, 2013, Cambridge, MA, USA. New York: IEEE, 2013: 227-234. |
[35] | AUBLIN P L, MOKHTAR S B, QUÉMA V. Rbft: Redundant byzantine fault tolerance[C]//IEEE. 2013 IEEE 33rd International Conference on Distributed Computing Systems, July 8-11, 2013, Philadelphia, PA, USA. New York: IEEE, 2013: 297-306. |
[36] | COPELAND C, ZHONG H. Tangaroa: A Byzantine Fault Tolerant Raft[EB/OL]. . |
[37] | MILLER A, XIA Y, CROMAN K, et al.The Honey Badger of BFT Protocols[C]//ACM. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,October 24-28, 2016, Vienna, Austria. New York: ACM, 2016: 31-42. |
[38] | BACK A. Hashcash-a Denial of Service Counter-Measure[EB/OL]. , 2002-8-1. |
[39] | ANDROULAKI E, BARGER A, BORTNIKOV V, et al. Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains[EB/OL]., 2018-4-17. |
[40] | COURTOIS N T, EMIRDAG P, NAGY D A.Could Bitcoin Transactions be 100x Faster?[C]//IEEE. 2014 11th International Conference on Security and Cryptography (SECRYPT). August 28-30, 2014, Vienna, Austria. New York: IEEE, 2014: 1-6. |
[41] | Rosenfeld M.Analysis of Hashrate-Based Double Spending[J]. arXiv preprint arXiv: 1402. 2009, 2014. |
[42] | O’DWYER K J, MALONE D. Bitcoin Mining and Its Energy Footprint[C]//IET. 25th IET Irish Signals & Systems Conference 2014 and 2014 China-Ireland International Conference on Information and Communications Technologies (ISSC 2014/CIICT 2014), June 26-27, 2013, Limerick, Ireland. London: IET, 2014: 280-285. |
[43] | EYAL I, GENCER A E, SIRER E G, et al.Bitcoin-Ng: A Scalable Blockchain Protocol[C]//USENIX. Proceedings of the 13th USENIX Conference on Networked Systems Design and Implementation, March 16-18, 2016, Santa Clara, CA. Berkeley: USENIX Association, 2016: 45-59. |
[44] | BACK A, CORALLO M, DASHJR L, et al. Enabling Blockchain Innovations with Pegged Sidechains [EB/OL]. , 2014-10-22. |
[45] | Empowering Light Nodes in Blockchains with Block Summari-zation [C]//IEEE. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS).February 26-28, 2018, Paris, France. New York: IEEE. 2018: 1-5. |
[46] | WANG Xing, WENG Jian, ZHANG Yue, et al. Blaockchain System for Creating Digital Assets Based on Reputation Value[J]. Netinfo Security, 2018, 18(5): 59-65. |
王醒,翁健,张悦,等.基于信誉值创建数字资产的区块链系统[J].信息网络安全,2018,18(5):59-65. | |
[47] | CROMAN K, DECKER C, EYAL I, et al.On Scaling Decentralized Blockchains[C]//International Conference on Financial Cryptography and Data Security, February 26, 2016, Christ Church, Barbados Berlin: Springer, 2016: 106-125. |
[48] | LUU L, NARAYANAN V, ZHENG C, et al.A Secure Sharding Protocol for Open Blockchains[C]//ACM. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, New York: ACM, 2016: 17-30. |
[49] | BALL M, ROSEN A, SABIN M, et al. Proofs of Useful Work[EB/OL]. , 2017-5-15. |
[50] | KING S. Primecoin: Cryptocurrency with Prime Number Proof-of-Work [EB/OL]. . |
[51] | JUELS A, BURTON S. KALISKI J.Pors: Proofs of Retrievability for Large Files[C]//ACM. Proceedings of the 14th ACM conference on Computer and communications security, July 7 -12, Alexandria, Virginia, USA. New York: ACM, 2007: 584-597. |
[52] | MILLER A, JUELS A, SHI E, et al.Permacoin: Repurposing Bitcoin Work for Data Preservation[C]//IEEE. 2014 IEEE Symposium on Security and Privacy (SP), May 18-21, 2014, San Jose, CA, USA. New York: IEEE, 2014: 475-490. |
[53] | BIRYUKOV A, KHOVRATOVICH D. Equihash: Asymmetric Proof-of-Work Based on the Generalized Birthday Problem [EB/OL]. , 2016-10-27. |
[54] | WAGNER D.A Generalized Birthday Problem[C]//Springer. Annual International Cryptology Conference, August 18-22, 2002, Santa Barbara, California, USA. Berlin: Springer, 2002: 288-304. |
[55] | WOOD G.Ethereum: A Secure Decentralised Generalised Transaction Ledger[J]. Ethereum project yellow paper, 2014, 151: 1-32. |
[56] | HANKE T, Movahedi M, Williams D.Dfinity Technology Overview Series,Consensus System[EB/OL].arXiv preprint arXiv:1805.04548, 2018-5-11. |
[57] | PASS R, SHI E.Fruitchains: A Fair Blockchain[C]//ACM. Proceedings of the ACM Symposium on Principles of Distributed Computing, July 25-27, 2017, Washington, DC, USA. New York: ACM, 2017: 315-324. |
[58] | KWON J.Tendermint: Consensus without Mining[EB/OL]., 2019-4-19. |
[59] | GILAD Y, HEMO R, MICALI S, et al.Algorand: Scaling Byzantine Agreements for Cryptocurrencies[C]//ACM. Proceedings of the 26th Symposium on Operating Systems Principles, October 28, 2017, Shanghai, China. New York: ACM, 2017: 51-68. |
[60] | BUTERIN V, GRIFFITH V. Casper the Friendly Finality Gadget[EB/OL]., 2017-10-15. |
[61] | KIAYIAS A, RUSSELL A, DAVID B, et al.Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol[C]// Springer. 37th Annual International Cryptology Conference Annual International Cryptology Conference, August 20-24, 2017, Santa Barbara, CA, USA. Cham: Springer, 2017: 357-388. |
[62] | CHEN L, XU L, SHAH N, et al.On Security Analysis of Proof-of-Elapsed-Time (PoET)[C]//Springer. 19thInternational Symposium on Stabilization, Safety, and Security of Distributed Systems, November 5-8, 2017, Boston, MA, USA. Cham: Springer, 2017: 282-297. |
[63] | MILUTINOVIC M, HE W, WU H, et al.Proof of Luck: An Efficient Blockchain Consensus Protocol[C]//ACM. Proceedings of the 1st Workshop on System Software for Trusted Execution, December 12-16, 2016, Trento, Italy. New York: ACM, 2016: 1-6. |
[64] | MCKEEN F, ALEXANDROVICH I, BERENZON A, et al.Innovative Instructions and Software Model for Isolated Execution[EB/OL]., 2013-4-14. |
[65] | SCHNEIDER F B.Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial[J]. ACM Computing Surveys, 1990, 22(4): 299-319. |
[66] | LARIMER D. Steem: an Incentivized,Blockchain-Based,Public Content Platform [EB/OL]. , 2018-7-15. |
[67] | LARIMER D. Eos. Io Technical White Paper V2[EB/OL]. , 2018-4-28. |
[68] | ZHANG E.A Byzantine Fault Tolerance Algorithm for Blockchain[EB/OL]. , 2019-1-7. |
[69] | VUKOLIĆ M.Rethinking Permissioned Blockchains[C]// ACM. Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, April 2, 2017, Abu Dhabi, United Arab Emirates. New York: ACM, 2017: 3-7. |
[70] | SCHWARTZ D, YOUNGS N, BRITTO A. The Ripple Protocol Consensus Algorithm[EB/OL]. , 2014-5-12. |
[71] | CHASE B, MACBROUGH E. Analysis of the XRP Ledger Consensus Protocol[EB/OL]. , 2018-2-15. |
[72] | SOUSA J, BESSANI A, VUKOLIC M.A Byzantine Fault-Tolerant Ordering Service for the Hyperledger Fabric Blockchain Platform[C]//IEEE. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), June 25-28, 2018, Luxembourg City, Luxembourg. New York: IEEE, 2018: 51-58. |
[73] | HUNT P, KONAR M, JUNQUEIRA F P, et al.Zookeeper: Wait-Free Coordination for Internet-Scale Systems[EB/OL]., 2019-1-7. |
[74] | MURATOV F, LEBEDEV A, IUSHKEVICH N, et al.Yac: BFT Consensus Algorithm for Blockchain[J].arXiv: 1809. 00554. |
[75] | MARTINO W. Kadena The First Scalable,HighPerformance Private Blockchain[EB/OL]., 2016-8-24. |
[76] | MAZIERES D.The Stellar Consensus Protocol: A Federated Model for Internet Level Consensus[EB/OL]., 2015-7-14. |
[77] | CHAIN. Federated Consensus Protocol[EB/OL]., 2019-1-7. |
[78] | HAN Xuan, LIU Yamin.Research on the Consensus Mechanisms of Blockchain Technology[J]. Netinfo Security, 2017, 17(9): 147-152. |
韩璇,刘亚敏.区块链技术中的共识机制研究[J].信息网络安全,2017,17(9):147-152. |
[1] | Lingyu BIAN, Linlin ZHANG, Kai ZHAO, Fei SHI. Ethereum Malicious Account Detection Method Based on LightGBM [J]. Netinfo Security, 2020, 20(4): 73-80. |
[2] | Zhilai MAO, Yanan LIU, Huiping SUN, Zhong CHEN. Research on Blockchain Performance Scalability and Security [J]. Netinfo Security, 2020, 20(3): 56-64. |
[3] | Weimin LANG, Han ZHANG, Yifeng ZHAO, Jinfang YAO. A Blockchain-based Behavior Regulation and Activities Management Scheme for Internet of Things [J]. Netinfo Security, 2020, 20(2): 22-29. |
[4] | ZHOU Yihua, LV Zhuqing, YANG Yuguang, SHI Weimin. Data Deposit Management System Based on Blockchain Technology [J]. Netinfo Security, 2019, 19(8): 8-14. |
[5] | LU Aitong, ZHAO Kuo, YANG Jingying, WANG Feng. Research on Cross-chain Technology of Blockchain [J]. Netinfo Security, 2019, 19(8): 83-90. |
[6] | Yuanjian ZHOU, Dongmei QING, Yining LIU, Songzhan LV. Design of Electronic Warehouse Receipts System Based on Blockchain [J]. Netinfo Security, 2019, 19(6): 84-90. |
[7] | Wenming WANG, Chongyang SHI, Yinghao WANG, Dejian WEI. Research on Transaction and Security Based on Blockchain Technology [J]. Netinfo Security, 2019, 19(5): 1-9. |
[8] | Yiming HEI, Jianwei LIU, Zongyang ZHANG, Hui YU. Blockchain-based Distributed Cloud Storage System with Public Verification [J]. Netinfo Security, 2019, 19(3): 52-60. |
[9] | Guofeng ZHAO, Mingcong ZHANG, Jihua ZHOU, Tao ZHAO. Research and Application of Block File Storage Model Based on Blockchain System of Erasure Code [J]. Netinfo Security, 2019, 19(2): 28-35. |
[10] | LI Peili, XU Haixia, MA Tianjun, MU Yongheng. The Application of Blockchain Technology in Network Mutual Aid and User Privacy Protection [J]. 信息网络安全, 2018, 18(9): 60-65. |
[11] | DUAN Qiongqiong, XIANG Dinghua, SHI Hongzhou. Design on the Blockchain-based Authentication for Smart Objects [J]. 信息网络安全, 2018, 18(9): 95-101. |
[12] | LIU Jinghao, PING Jianchuan, FU Xiaomei. Research on A Distributed Public Key System Based on Blockchain [J]. 信息网络安全, 2018, 18(8): 25-33. |
[13] | HU Wei, WU Qiuhan, LIU Shengli, FU Wei. Design of Secure eID and Identity Authentication Agreement in Mobile Terminal Based on Guomi Algorithm and Blockchain [J]. 信息网络安全, 2018, 18(7): 7-9. |
[14] | WANG Xing, WENG Jian, ZHANG Yue, LI Ming. Blockchain System for Creating Digital Assets Based on Reputation Value [J]. 信息网络安全, 2018, 18(5): 59-65. |
[15] | MA Chunguang, AN Jing, BI Wei, YUAN Qi. Smart Contract in Blockchain [J]. 信息网络安全, 2018, 18(11): 8-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||