[1] |
NYBERG K, RUEPPEL R A.A New Signature Scheme Based on DSA Giving Message Recovery[C]//ACM. The 1st ACM Conference on Computer and Communications Security, November 3-5, 1993, Fairfax, Virginia, USA. New York: ACM, 1993: 58-61.
|
[2] |
ABE M, OKAMOTO T.A Signature Scheme with Message Recovery as Secure as Discrete Logarithm[M]//Spring. Advances in Cryptology-Asiacrypt 1999. London: Spring-Verlag, 1999: 378-389.
|
[3] |
ZHANG Fangguo, SUSILO W, MU Yi.Identity-based Partial Message Recovery Signatures(or How to Shorten ID-based Signatures)[M]//Spring. Financial Cryptography and Data Security, Heidelberg: Springer, 2005: 45-56.
|
[4] |
GROVER L K.Quantum Mechanics Helps in Searching for a Needle in a Haystack[J]. Physical Review Letters, 1997, 79(2): 325-328.
|
[5] |
SHOR P W.Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509.
|
[6] |
PEIKERT C.A Decade of Lattice Cryptography[J]. Foundations and Trends in Theoretical Computer Science, 2016, 10(4): 283-424.
|
[7] |
BRAKERSKI Z, GENTRY C, VAIKUNTANATHAN V.Fully Homomorphic Encryption without Bootstrapping[J]. ACM Transactions on Computation Theory(TOCT), 2014, 6(3): 309-325.
|
[8] |
LU Xiuhua, WEN Qiaoyan, WANG Licheng, et al.A Lattice-based Signcryption Scheme Without Trapdoors[J]. Journal of Electronics & Information Technology, 2016, 9(38): 2287-2293.
|
|
路秀华,温巧燕,王励成,等,无陷门格基签密方案[J]. 电子与信息学报,2016,9(38):2287-2293.
|
[9] |
GÉRARD F, MERCKX K. Post-Quantum Signcryption From Lattice-based Signatures[EB/OL]. , 2019-7-23.
|
[10] |
ZHANG Jiang, ZHANG Zhenfeng, DING Jintai, et al.Authenticated Key Exchange from Ideal Lattices[M]// Spring. Advances in Cryptology-Eurocrypt 2015. Heidelberg: Springer, 2015: 719-751.
|
[11] |
TIAN Miaomiao, HUANG Liusheng.Lattice-based Message Recovery Signature Schemes[J]. International Journal of Electronic Security and Digital Forensics, 2013, 5(3-4): 257-269.
|
[12] |
XIE Jia.Research on Digital Signature Schemes of NTRU Lattice[D]. Xi’an: Xidian University, 2016.
|
|
谢佳. 基于NTRU格的数字签名体制的研究[D]. 西安:西安电子科技大学,2016.
|
[13] |
GENTRY C, PEIKERT C, VAIKUNTANATHAN V, Trapdoors for Hard Lattices and New Cryptographic Constructions[C]//ACM. The Fortieth Annual ACM Symposium on Theory of Computing, May 17-20, 2008, Victoria, British Columbia, Canada. New York: ACM, 2008: 197-206.
|
[14] |
MICCIANCIO D, PEIKERT C.Trapdoor for Lattices: Simpler, Tighter, Faster, Smaller[M]//Spring. Advances in Cryptology-Eurocrypt 2012. Heidelberg: Springer, 2012: 708-718.
|
[15] |
GENISE N, MICCIANCIO D.Faster Gaussian Sampling for Trapdoor Lattices with Arbitrary Modulus[M]//Spring. Advances in Cryptology-Eurocrypt 2018. Cham: Springer, 2018: 174-203.
|
[16] |
GENISE N. Building an Efficient Lattice Gadget Toolkit: Subgaussian Sampling and More[EB/OL]. , 2019-7-23.
|
[17] |
LYUBASHEVSKY V.Lattice Signatures without Trapdoors[M]//Spring. Advances in Cryptology-Eurocrypt 2012. Heidelberg: Springe, 2012: 735-755.
|
[18] |
MICCIANCIO D, GEGEV O.Worst-case to Average-case Reductions Based on Gaussian Measures[J]. SIAM Journal on Computing, 2007, 1(37): 267-302.
|