信息网络安全 ›› 2024, Vol. 24 ›› Issue (10): 1562-1569.doi: 10.3969/j.issn.1671-1122.2024.10.010

• 入选论文 • 上一篇    下一篇

基于知识蒸馏的无数据个性化联邦学习算法

陈婧1,2, 张健1,2,3()   

  1. 1.南开大学计算机学院,天津 300350
    2.天津市网络与数据安全技术重点实验室,天津 300350
    3.南开大学网络空间安全学院,天津 300350
  • 收稿日期:2024-05-03 出版日期:2024-10-10 发布日期:2024-09-27
  • 通讯作者: 张健, zhang.jian@nankai.edu.cn
  • 作者简介:陈婧(2002—),女,安徽,硕士研究生,主要研究方向为数据安全|张健(1968—),男,天津,教授,博士,CCF会员,主要研究方向为网络安全、数据安全、云安全、系统安全
  • 基金资助:
    国家重点研发计划(2022YFB3103202);天津市重点研发计划(20YFZCGX00680);天津市新一代人工智能科技重大专项(19ZXZNGX00090)

A Data-Free Personalized Federated Learning Algorithm Based on Knowledge Distillation

CHEN Jing1,2, ZHANG Jian1,2,3()   

  1. 1. College of Computer Science, Nankai University, Tianjin 300350, China
    2. Tianjin Key Laboratory of Network and Data Security Technology, Tianjin 300350, China
    3. College of Cyber Science, Nankai University, Tianjin 300350, China
  • Received:2024-05-03 Online:2024-10-10 Published:2024-09-27

摘要:

联邦学习算法通常面临着客户端之间差异巨大的问题,这些异质性会降低全局模型性能,文章使用知识蒸馏方法缓解这个问题。为了进一步解放公共数据,完善模型性能,文章所提的DFP-KD算法使用无数据方法合成训练数据,利用无数据知识蒸馏方法训练鲁棒的联邦学习全局模型;使用ReACGAN作为生成器部分,并且采用分步EMA快速更新策略,在避免全局模型灾难性遗忘的同时加快模型的更新速率。对比实验、消融实验和参数取值影响实验表明,DFP-KD算法比经典的无数据知识蒸馏算法在准确率、稳定性、更新速度方面都更具优势。

关键词: 联邦学习, 异质性, 知识蒸馏, 图像生成

Abstract:

Federated learning algorithms usually face the problem of huge differences between clients, and these heterogeneities degrade the global model performance, which are mitigated by knowledge distillation approaches. In order to further liberate public data and improve the model performance, DFP-KD trained a robust federated learning global model using datad-free knowledge distillation methods; used ReACGAN as the generator part; and adopted a step-by-step EMA fast updating strategy, which speeded up the update rate of the global model while avoiding catastrophic forgetting. Comparison experiments, ablation experiments, and parameter value influence experiments show that DFP-KD is more advantageous than the classical data-free knowledge distillation algorithms in terms of accuracy, stability, and update rate.

Key words: federated learning, heterogeneity, knowledge distillation, image generation

中图分类号: