信息网络安全 ›› 2024, Vol. 24 ›› Issue (10): 1562-1569.doi: 10.3969/j.issn.1671-1122.2024.10.010
收稿日期:
2024-05-03
出版日期:
2024-10-10
发布日期:
2024-09-27
通讯作者:
张健, 作者简介:
陈婧(2002—),女,安徽,硕士研究生,主要研究方向为数据安全|张健(1968—),男,天津,教授,博士,CCF会员,主要研究方向为网络安全、数据安全、云安全、系统安全
基金资助:
CHEN Jing1,2, ZHANG Jian1,2,3()
Received:
2024-05-03
Online:
2024-10-10
Published:
2024-09-27
摘要:
联邦学习算法通常面临着客户端之间差异巨大的问题,这些异质性会降低全局模型性能,文章使用知识蒸馏方法缓解这个问题。为了进一步解放公共数据,完善模型性能,文章所提的DFP-KD算法使用无数据方法合成训练数据,利用无数据知识蒸馏方法训练鲁棒的联邦学习全局模型;使用ReACGAN作为生成器部分,并且采用分步EMA快速更新策略,在避免全局模型灾难性遗忘的同时加快模型的更新速率。对比实验、消融实验和参数取值影响实验表明,DFP-KD算法比经典的无数据知识蒸馏算法在准确率、稳定性、更新速度方面都更具优势。
中图分类号:
陈婧, 张健. 基于知识蒸馏的无数据个性化联邦学习算法[J]. 信息网络安全, 2024, 24(10): 1562-1569.
CHEN Jing, ZHANG Jian. A Data-Free Personalized Federated Learning Algorithm Based on Knowledge Distillation[J]. Netinfo Security, 2024, 24(10): 1562-1569.
[1] | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// AISTATS. 20th International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2017: 1273-1282. |
[2] | ZHANG L. Federated Learning-Cracking the Smart Healthcare Data Security Privacy Puzzle[EB/OL]. (2020-08-04)[2024-04-20]. https://zhuanlan.zhihu.com/p/166482616. |
[3] | LI Qinbin, DIAO Yiqun, CHEN Quan, et al. Federated Learning on Non-IID Data Silos: An Experimental Study[C]// IEEE. 38th International Conference on Data Engineering (ICDE). New York: IEEE, 2022: 965-978. |
[4] | GONG Yanxia. Research on Personalized Method of Federated Learning in Heterogeneous Scenario[D]. GuiLin: Guangxi Normal University, 2023. |
龚艳霞. 异质场景下联邦学习的个性化方法研究[D]. 桂林: 广西师范大学, 2023. | |
[5] | HUANG Hua. Research on Key Technologies of Federated Learning with Heterogeneous Data[D]. Xi’an: Xidian University, 2022. |
黄华. 异质性数据的联邦学习关键技术研究[D]. 西安: 西安电子科技大学, 2022. | |
[6] | SHEN Tao, KUANG Kun, WU Chao, et al. The Challenge of Heterogeneity in Privacy Computing: Exploring the Co-Optimization Problem of Federated Learning in Distributed Heterogeneous Environments[J]. Artificial Intelligence, 2023(6): 1-13. |
沈弢, 况琨, 吴超, 等. 隐私计算中的异质性挑战:探索分布式异质环境下联邦学习的协同优化问题[J]. 人工智能, 2023(6): 1-13. | |
[7] | ZHAN Fan. Research on Weighted Federated Distillation Algorithm for Non-IID Data[D]. Wuhan: Huazhong University of Science and Technology, 2022. |
詹帆. 面向非独立同分布数据的加权联邦蒸馏算法研究[D]. 武汉: 华中科技大学, 2022. | |
[8] | CHEN Xuebin, REN Zhiqiang. PFKD: A Personalized Federated Learning Framework that Integrates Data Heterogeneity and Model Heterogeneity[J]. Journal of Nanjing University of Information Science & Technology, 2024, 16(4): 513-519. |
陈学斌, 任志强. PFKD: 综合考虑数据异构和模型异构的个性化联邦学习框架[J]. 南京信息工程大学学报, 2024, 16(4): 513-519. | |
[9] | LIN Tao, KONG Lingjing, STICH S U, et al. Ensemble Distillation for Robust Model Fusion in Federated Learning[J]. Advances in Neural Information Processing Systems, 2020, 33: 2351-2363. |
[10] | YANG Qiang. A Study of Image Classification Algorithm Based on Heterogeneous Federated Learning[D]. Chengdu: University of Electronic Science and Technology of China, 2023. |
杨强. 基于异构联邦学习的图像分类算法研究[D]. 成都: 电子科技大学, 2023. | |
[11] | ZHUANG Yulin, LYU Lingjuan, SHI Chuan, et al. Data-Free Adversarial Knowledge Distillation for Graph Neural Networks[C]// IJCAI. 31st International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2022: 2441-2447. |
[12] | ZHU Zhuangdi, HONG Junyuan, ZHOU Jiayu. Data-Free Knowledge Distillation for Heterogeneous Federated Learning[C]// ICML. 38th International Conference on Machine Learning. New York: PMLR, 2021: 12878-12889. |
[13] | ZHANG Lin, SHEN Li, DING Liang, et al. Fine-Tuning Global Model Via Data-Free Knowledge Distillation for Non-IID Federated Learning[C]// IEEE. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2022: 10164-10173. |
[14] | ZHANG Jie, CHEN Chen, LI Bo, et al. Dense: Data-Free One-Shot Federated Learning[J]. Advances in Neural Information Processing Systems, 2022, 35: 21414-21428. |
[15] | LUO Kangyang, WANG Shuai, FU Yexuan, et al. DFRD: Data-Free Robustness Distillation for Heterogeneous Federated Learning[C]// NeurIPS. 37th International Conference on Neural Information Processing Systems. New York: Curran Associates, 2023: 17854-17866. |
[16] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
[17] | JIANG Jinyang, WU Haotian, WANG Fengjuan, et al. Cross-Dimensional Reconstruction of Microstructures and Transport Properties Characterization of Porous Materials via Deep Convolutional Generative Adversarial Network[J]. Engineering Mechanics, 2024, 41: 1-14. |
[18] | ODENA A, OLAH C, SHLENS J. Conditional Image Synthesis with Auxiliary Classifier Gans[C]// ICML. 34th International Conference on Machine Learning. New York: PMLR, 2017: 2642-2651. |
[19] | KANG M, SHIM W, CHO M, et al. Rebooting Acgan: Auxiliary Classifier Gans with Stable Training[J]. Advances in Neural Information Processing Systems, 2021, 34: 23505-23518. |
[20] | DO K, LE T H, NGUYEN D, et al. Momentum Adversarial Distillation: Handling Large Distribution Shifts in Data-Free Knowledge Distillation[J]. Advances in Neural Information Processing Systems, 2022, 35: 10055-10067. |
[1] | 郭倩, 赵津, 过弋. 基于分层聚类的个性化联邦学习隐私保护框架[J]. 信息网络安全, 2024, 24(8): 1196-1209. |
[2] | 薛茗竹, 胡亮, 王明, 王峰. 基于联邦学习和区块链技术的TAP规则处理系统[J]. 信息网络安全, 2024, 24(3): 473-485. |
[3] | 林怡航, 周鹏远, 吴治谦, 廖勇. 基于触发器逆向的联邦学习后门防御方法[J]. 信息网络安全, 2024, 24(2): 262-271. |
[4] | 金志刚, 丁禹, 武晓栋. 融合梯度差分的双边校正联邦入侵检测算法[J]. 信息网络安全, 2024, 24(2): 293-302. |
[5] | 兰浩良, 王群, 徐杰, 薛益时, 张勃. 基于区块链的联邦学习研究综述[J]. 信息网络安全, 2024, 24(11): 1643-1654. |
[6] | 萨其瑞, 尤玮婧, 张逸飞, 邱伟杨, 马存庆. 联邦学习模型所有权保护方案综述[J]. 信息网络安全, 2024, 24(10): 1553-1561. |
[7] | 吴立钊, 汪晓丁, 徐恬, 阙友雄, 林晖. 面向半异步联邦学习的防御投毒攻击方法研究[J]. 信息网络安全, 2024, 24(10): 1578-1585. |
[8] | 吴昊天, 李一凡, 崔鸿雁, 董琳. 基于零知识证明和区块链的联邦学习激励方案[J]. 信息网络安全, 2024, 24(1): 1-13. |
[9] | 赵佳, 杨博凯, 饶欣宇, 郭雅婷. 基于联邦学习的Tor流量检测算法设计与实现[J]. 信息网络安全, 2024, 24(1): 60-68. |
[10] | 徐茹枝, 戴理朋, 夏迪娅, 杨鑫. 基于联邦学习的中心化差分隐私保护算法研究[J]. 信息网络安全, 2024, 24(1): 69-79. |
[11] | 赖成喆, 赵益宁, 郑东. 基于同态加密的隐私保护与可验证联邦学习方案[J]. 信息网络安全, 2024, 24(1): 93-105. |
[12] | 彭翰中, 张珠君, 闫理跃, 胡成林. 联盟链下基于联邦学习聚合算法的入侵检测机制优化研究[J]. 信息网络安全, 2023, 23(8): 76-85. |
[13] | 陈晶, 彭长根, 谭伟杰, 许德权. 基于差分隐私和秘密共享的多服务器联邦学习方案[J]. 信息网络安全, 2023, 23(7): 98-110. |
[14] | 刘长杰, 石润华. 基于安全高效联邦学习的智能电网入侵检测模型[J]. 信息网络安全, 2023, 23(4): 90-101. |
[15] | 刘吉强, 王雪微, 梁梦晴, 王健. 基于共享数据集和梯度补偿的分层联邦学习框架[J]. 信息网络安全, 2023, 23(12): 10-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||