信息网络安全 ›› 2024, Vol. 24 ›› Issue (9): 1328-1351.doi: 10.3969/j.issn.1671-1122.2024.09.003
收稿日期:
2024-05-04
出版日期:
2024-09-10
发布日期:
2024-09-27
通讯作者:
刘庆 作者简介:
温金明(1984—),男,江西,教授,博士,主要研究方向为格密码和稀疏学习|刘庆(2002—),女,云南,硕士研究生,主要研究方向为全同态加密|陈洁(1985—),男,江苏,研究员,博士,CCF会员,主要研究方向为公钥密码和密码应用|吴永东(1970—),男,湖南,教授,博士,CCF会员,主要研究方向为人工智能安全和通信安全
基金资助:
WEN Jinming1,2, LIU Qing1(), CHEN Jie3, WU Yongdong1,4
Received:
2024-05-04
Online:
2024-09-10
Published:
2024-09-27
摘要:
全同态加密方案是一种具备数据机密性和安全性的加密方案,同时还能够对密文进行计算操作。在云计算时代,全同态加密方案能够满足私有信息检索、多方安全计算等多种应用需求。错误学习与全同态加密的结合,迅速推动了全同态加密方案的发展,并引出了多种技术工具,如密钥交换和模交换等具有理论和实际应用意义的技术。自从2011年基于LWE的全同态加密方案被提出以来,基于LWE类型的方案已成为全同态加密方案的主流方法,并逐步从理论走向实际应用。文章首先介绍全同态加密的基础知识和应用,并对构造方案的数学理论进行详细分析;然后系统梳理了每一代同态加密方案,并给出了每一代方案的典型构造方式;最后探讨了当前基于LWE的全同态加密方案存在的问题以及未来的发展趋势,为后续研究者提供一些参考。
中图分类号:
温金明, 刘庆, 陈洁, 吴永东. 基于错误学习的全同态加密技术研究现状与挑战[J]. 信息网络安全, 2024, 24(9): 1328-1351.
WEN Jinming, LIU Qing, CHEN Jie, WU Yongdong. Research Current Status and Challenges of Fully Homomorphic Cryptography Based on Learning with Errors[J]. Netinfo Security, 2024, 24(9): 1328-1351.
表1
参数尺寸
方案 | 公钥 | 私钥 | 评估密钥 | 密文 |
---|---|---|---|---|
BV11 | ||||
BGV12 | ||||
Bra12 | ||||
GSW13 | — |
[1] | RIVEST R L, ADLEMAN L, DERTOUZOS M L. On Data Banks and Privacy Homomorphisms[J]. Foundations of Secure Computation, 1978, 4(11): 169-180. |
[2] | RIVEST R L, SHAMIR A, ADLEMAN L. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems[J]. Communications of the ACM, 1978, 21(2): 120-126. |
[3] | ELGAMAL T. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms[J]. IEEE Transactions on Information Theory, 1985, 31(4): 469-472. |
[4] | NACCACHE D, STERN J. A New Public Key Cryptosystem Based on Higher Residues[C]// ACM. Proceedings of the 5th ACM Conference on Computer and Communications Security. New York: ACM, 1998: 59-66. |
[5] | PAILLIER P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[C]// Springer. International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 1999: 223-238. |
[6] | DAMGARD I, JURIK M. A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System[C]// Springer. Public Key Cryptography:4th International Workshop on Practice and Theory in Public Key Cryptosystems. Heidelberg: Springer, 2001: 119-136. |
[7] | SANDER T, YOUNG A, YUNG M. Non-Interactive Cryptocomputing for NC^1[C]// IEEE. 40th Annual Symposium on Foundations of Computer Science. New York: IEEE, 1999: 554-566. |
[8] | DAMIEN S, STEINFELD R. Faster Fully Homomorphic Encryption[C]// Springer. Advances in Cryptology-ASIACRYPT 2010: 16th International Conference on the Theory and Application of Cryptology and Information Security. Heidelberg: Springer, 2010: 24-43. |
[9] | GENTRY C. Fully Homomorphic Encryption Using Ideal Lattices[C]// ACM. Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing. New York: ACM, 2009: 169-178. |
[10] | GENTRY C, HALEVI S. Implementing Gentry’s Fully-Homomorphic Encryption Scheme[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 2011: 129-148. |
[11] | CRAMER R, DUCAS L, PEIKERT C, et al. Recovering Short Generators of Principal Ideals in Cyclotomic Rings[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 2016: 559-585. |
[12] | SMART N P, VERCAUTEREN F. Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes[C]// Springer. International Workshop on Public Key Cryptography. Heidelberg: Springer, 2010: 420-443. |
[13] | VAN D M, GENTRY C, HALEVI S, et al. Fully Homomorphic Encryption over the Integers[C]// Springer. Advances in Cryptology-EUROCRYPT 2010: 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 2010: 24-43. |
[14] | HOWGRAVE-GRAHAM N. Approximate Integer Common Divisors[C]// Springer. International Cryptography and Lattices Conference. Heidelberg: Springer, 2001: 51-66. |
[15] | GALBRAITH S D, GEBREGIYORGIS S W, MURPHY S. Algorithms for the Approximate Common Divisor Problem[J]. LMS Journal of Computation and Mathematics, 2016, 19: 58-72. |
[16] | YANG Haomiao, XIA Qi, WANG Xiaofen, et al. A New Somewhat Homomorphic Encryption Scheme over Integers[C]// IEEE. 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. New York: IEEE, 2012: 61-64. |
[17] | RAMAIAH Y G, KUMARI G V. Towards Practical Homomorphic Encryption with Efficient Public Key Generation[J]. International Journal on Network Security, 2012, 3(4): 10-21. |
[18] | CHEN Liquan, BEN Hongmei, HUANG Jie. An Encryption Depth Optimization Scheme for Fully Homomorphic Encryption[C]// IEEE. 2014 International Conference on Identification, Information and Knowledge in the Internet of Things. New York: IEEE, 2014: 137-141. |
[19] | NUIDA K, KUROSAWA K. (Batch) Fully Homomorphic Encryption over Integers for Non-Binary Message Spaces[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 2015: 537-555. |
[20] | REGEV O. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography[J]. Journal of the ACM (JACM), 2009, 56(6): 1-40. |
[21] | LYUBASHEVSKY V, PEIKERT C, REGEV O. On Ideal Lattices and Learning with Errors over Rings[C]// Springer. Advances in Cryptology-EUROCRYPT 2010: 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 2010: 1-23. |
[22] | LÓPEZ-ALT A, TROMER E, VAIKUNTANATHAN V. On-the-Fly Multiparty Computation on the Cloud via Multikey Fully Homomorphic Encryption[C]// ACM. Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing. New York: ACM, 2012: 1219-1234. |
[23] | BOS J W, LAUTER K, LOFTUS J, et al. Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[C]// Springer. Cryptography and Coding:14th IMA International Conference. Heidelberg: Springer, 2013: 45-64. |
[24] | DORÖZ Y, SUNAR B. Flattening NTRU for Evaluation Key Free Homomorphic Encryption[J]. Journal of Mathematical Cryptology, 2020, 14(1): 66-83. |
[25] | SMART N P, VERCAUTEREN F. Fully Homomorphic SIMD Operations[J]. Designs, Codes and Cryptography, 2014, 71(1): 57-81. |
[26] | BRAKERSKI Z, VAIKUNTANATHAN V. Efficient Fully Homomorphic Encryption from (Standard) LWE[J]. SIAM Journal on Computing, 2014, 43(2): 831-871. |
[27] | BRAKERSKI Z, GENTRY C, VAIKUNTANATHAN V. (Leveled) Fully Homomorphic Encryption without Bootstrapping[J]. ACM Transactions on Computation Theory (TOCT), 2014, 6(3): 1-36. |
[28] | GENTRY C, SAHAI A, WATERS B. Homomorphic Encryption from Learning with Errors:Conceptually-Simpler, Asymp-Totically-Faster, Attribute-Based[C]// Springer. Advances in Cryptology-CRYPTO 2013: 33rd Annual Cryptology Conference. Heidelberg: Springer, 2013: 75-92. |
[29] | BRAKERSKI Z. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP[C]// Springer. Annual Cryptology Conference. Heidelberg: Springer, 2012: 868-886. |
[30] | DUCAS L, MICCIANCIO D. FHEW: Bootstrapping Homomorphic Encryption in Less than a Second[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 2015: 617-640. |
[31] | CHILLOTTI I, GAMA N, GEORGIEVA M, et al. Faster Fully Homomorphic Encryption: Bootstrapping in Less than 0.1 Seconds[C]// Springer. Advances in Cryptology-ASIACRYPT 2016: 22nd International Conference on the Theory and Application of Cryptology and Information Security. Heidelberg: Springer, 2016: 3-33. |
[32] | MARTINS P, SOUSA L, MARIANO A. A Survey on Fully Homomorphic Encryption: An Engineering Perspective[J]. ACM Computing Surveys, 2017, 50(6): 1-33. |
[33] | ACAR A, AKSU H, ULUAGAC A S, et al. A Survey on Homomorphic Encryption Schemes: Theory and Implementation[J]. ACM Computing Surveys, 2018, 51(4): 1-35. |
[34] | ALLOGHANI M, ALANI M M, AL-JUMEILY D, et al. A systematic Review on the Status and Progress of Homomorphic Encryption Technologies[J]. Journal of Information Security and Applications, 2019, 48: 102-112. |
[35] | ALAYA B, LAOUAMER L, MSILINI N. Homomorphic Encryption Systems Statement: Trends and Challenges[J]. Computer Science Review, 2020, 36: 100-112. |
[36] | MARCOLLA C, SUCASAS V, MANZANO M, et al. Survey on Fully Homomorphic Encryption, Theory, and Applications[J]. Proceedings of the IEEE, 2022, 110(10): 1572-1609. |
[37] | BONEH D, GOH E J, NISSIM K. Evaluating 2-DNF Formulas on Ciphertexts[C]// Springer. Theory of Cryptography:Second Theory of Cryptography Conference. Heidelberg: Springer, 2005: 325-341. |
[38] | KUSHILEVITZ E, OSTROVSKY R. Replication is Not Needed: Single Database, Computationally-Private Information Retrieval[C]// IEEE. Proceedings 38th Annual Symposium on Foundations of Computer Science. New York: IEEE, 1997: 364-373. |
[39] | BENALOH J. Dense Probabilistic Encryption[C]// IEEE. Proceedings of the Workshop on Selected Areas of Cryptography. New York: IEEE, 1994: 120-128. |
[40] | YAO A C. Protocols for Secure Computations[C]// IEEE. 23rd Annual Symposium on Foundations of Computer Science. New York: IEEE, 1982: 160-164. |
[41] | ISHAI Y, PASKIN A. Evaluating Branching Programs on Encrypted Data[C]// Springer. Theory of Cryptography Conference. Heidelberg: Springer, 2007: 575-594. |
[42] | BARAK B, BRAKERSKI Z. Building the Swiss Army Knife[EB/OL]. Windows on Theory Blog. (2012-05-02)[2024-03-30]. http://windowsontheory.org/2012/05/02/building-the-swiss-army-knife. |
[43] | WANG Huiyong, FENG Yong, ZHAO Lingzhong, et al. A Secure Multi-Party Computation Protocol on the Basis of Multi-Key Homomorphism[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(7): 69-76. |
王会勇, 冯勇, 赵岭忠, 等. 基于多密钥同态技术的安全多方计算协议[J]. 华南理工大学学报(自然科学版), 2017, 45(7):69-76.
doi: 10.3969/j.issn.1000-565X.2017.07.010 |
|
[44] | KIM E, LEE H S, PARK J. Towards Round-Optimal Secure Multiparty Computations: Multikey FHE without a CRS[J]. International Journal of Foundations of Computer Science, 2020, 31(2): 157-174. |
[45] | TANG Chunming, HU Yezhou. Secure Multi-Party Computation Based on Multi-Bit Fully Homomorphic Encryption[J]. Chinese Journal of Computers, 2021, 44(4): 836-845. |
唐春明, 胡业周. 基于多比特全同态加密的安全多方计算[J]. 计算机学报, 2021, 44(4):836-845. | |
[46] | CHEN Hao, LAINE K, RINDAL P. Fast Private Set Intersection from Homomorphic Encryption[C]// ACM. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 1243-1255. |
[47] | CHEN Hao, HUANG Zhicong, LAINE K, et al. Labeled PSI from Fully Homomorphic Encryption with Malicious Security[C]// ACM. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 1223-1237. |
[48] | OPPERMANN A, GRASSO-TORO F, YURCHENKO A, et al. Secure Cloud Computing: Communication Protocol for Multithreaded Fully Homomorphic Encryption for Remote Data Processing[C]// IEEE. 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC). New York: IEEE, 2017: 503-510. |
[49] | GAI Keke, QIU Meikang, LI Yujun, et al. Advanced Fully Homomorphic Encryption Scheme over Real Numbers[C]// IEEE. 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). New York: IEEE, 2017: 64-69. |
[50] | ALTAEE M M S, ALANEZI M. Enhancing Cloud Computing Security by Paillier Homomorphic Encryption[J]. International Journal of Electrical and Computer Engineering (IJECE), 2021, 11(2): 1771-1779. |
[51] | CHOR B, KUSHILEVITZ E, GOLDREICH O, et al. Private Information Retrieval[J]. Journal of the ACM (JACM), 1998, 45(6): 965-981. |
[52] | ANGEL S, CHEN Hao, LAINE K, et al. PIR with Compressed Queries and Amortized Query Processing[C]// IEEE. 2018 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2018: 962-979. |
[53] | PATEL S, PERSIANO G, YEO K. Private Stateful Information Retrieval[C]// ACM. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 1002-1019. |
[54] | BARNI M, ORLANDI C, PIVA A. A Privacy-Preserving Protocol for Neural-Network-Based Computation[C]// ACM. Proceedings of the 8th Workshop on Multimedia and Security. New York: ACM, 2006: 146-151. |
[55] | ORLANDI C, PIVA A, BARNI M. Oblivious Neural Network Computing via Homomorphic Encryption[J]. EURASIP Journal on Information Security, 2007: 1-11. |
[56] | RAHULAMATHAVAN Y, PHAN R C W, VELURU S, et al. Privacy-Preserving Multi-Class Support Vector Machine for OutSourcing the Data Classification in Cloud[J]. IEEE Transactions on Dependable and Secure Computing, 2013, 11(5): 467-479. |
[57] | XIE Pengtao, BILENKO M, FINLEY T, et al. Crypto-Nets: Neural Networks over Encrypted Data[EB/OL]. (2014-12-24)[2023-12-13]. https://doi.org/10.48550/arXiv.1412.6181. |
[58] | ZHANG Qingchen, YANG L T, CHEN Zhikui. Privacy Preserving Deep Computation Model on Cloud for Big Data Feature Learning[J]. IEEE Transactions on Computers, 2015, 65(5): 1351-1362. |
[59] | CHABANNE H, DE WARGNY A, MILGRAM J, et al. Privacy-Preserving Classification on Deep Neural Network[EB/OL]. (2017-03-24)[2024-03-25]. https://eprint.iacr.org/2017/035. |
[60] | CRAMER R, GENNARO R, SCHOENMAKERS B. A Secure and Optimally Efficient Multi-Authority Election Scheme[J]. European Transactions on Telecommunications, 1997, 8(5): 481-490. |
[61] | BAUDRON O, FOUQUE P A, POINTCHEVAL D, et al. Practical Multi-Candidate Election System[C]// ACM. Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed Computing. New York: ACM, 2001: 274-283. |
[62] | PARKES D C, RABIN M O, SHIEBER S M, et al. Practical Secrecy-Preserving, Verifiably Correct and Trustworthy Auctions[C]// ACM. Proceedings of the 8th International Conference on Electronic Commerce: The New E-Commerce:Innovations for Conquering Current Barriers, Obstacles and Limitations to Conducting Successful Business on the Internet. New York: ACM, 2006: 70-81. |
[63] | Zhu Zhengyang. An Electronic Scheme Based on Total Homomorphic Encryption[D]. Guangzhou: Guangzhou University, 2013. |
朱正阳. 一种基于全同态加密的电子投票方案[D]. 广州: 广州大学, 2013. | |
[64] | CHILLOTTI I, GAMA N, GEORGIEVA M, et al. A Homomorphic LWE Based E-Voting Scheme[C]// Springer. Post-Quantum Cryptography:7th International Workshop. Heidelberg: Springer, 2016: 245-265. |
[65] | LOU Yu. A Private Multi-Candidate Electronic Voting Protocol[D]. Xiangtan: Hunan University of Science and Technology, 2017. |
娄宇. 一种私密多候选人电子投票协议[D]. 湘潭: 湖南科技大学, 2017. | |
[66] | LOU Yu, ZHU Gengming. A Multi-Candidate Electronic Voting Protocol with RLWE Homomorphic Encryption[J]. Com-puter Engineering & Science, 2018, 40(3): 472-480. |
娄宇, 朱更明. RLWE同态加密算法的多候选人电子投票协议[J]. 计算机工程与科学, 2018, 40(3):472-480. | |
[67] | HE Qian, SHEN Wei. Multi-Candidate Electronic Voting Scheme Based on Homomorphic Encryption[J]. Computer Systems and Applications, 2019, 28(2): 146-151 |
何倩, 沈炜. 基于同态加密的多候选人电子投票方案[J]. 计算机系统应用, 2019, 28(2):146-151. | |
[68] | CORON J S, MANDAL A, NACCACHE D, et al. Fully Homomorphic Encryption over the Integers with Shorter Public Keys[C]// Springer. Annual Cryptology Conference. Heidelberg: Springer, 2011: 487-504. |
[69] | FAN Junfeng, VERCAUTEREN F. Somewhat Practical Fully Homomorphic Encryption[EB/OL]. (2012-03-22)[2024-03-25]. https://eprint.iacr.org/2012/144. |
[70] | GENTRY C, HALEVI S, SMART N P. Fully Homomorphic Encryption with Polylog Overhead[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 2012: 465-482. |
[71] | HALEVI S, SHOUP V. Bootstrapping for Helib[J]. Journal of Cryptology, 2021, 34(1): 7-15. |
[72] | ALPERIN-SHERIFF J, PEIKERT C. Practical Bootstrapping in Quasilinear Time[C]// Springer. Annual Cryptology Conference. Heidelberg: Springer, 2013: 1-20. |
[73] | HALEVI S, SHOUP V. Faster Homomorphic Linear Transformations in Helib[C]// Springer. Annual International Cryptology Conference. Heidelberg: Springer, 2018: 93-120. |
[74] | CHEON J H, KIM A, KIM M, et al. Homomorphic Encryption for Arithmetic of Approximate Numbers[C]// Springer. Advances in Cryptology-ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security. Heidelberg: Springer, 2017: 409-437. |
[75] | BRAKERSKI Z, VAIKUNTANATHAN V. Lattice-Based FHE as Secure as PKE[C]// ACM. Proceedings of the 5th Conference on Innovations in Theoretical Computer Science. New York: ACM, 2014: 1-12. |
[76] | BARRINGTON D A. Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC[C]// ACM. Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing. New York: ACM, 1986: 1-5. |
[77] | ALPERIN-SHERIFF J, PEIKERT C. Faster Bootstrapping with Polynomial Error[C]// Springer. Advances in Cryptology-CRYPTO 2014: 34th Annual Cryptology Conference. Heidelberg: Springer, 2014: 297-314. |
[78] | GAMA N, IZABACHENE M, NGUYEN P Q, et al. Structural Lattice Reduction: Generalized Worst-Case to Average-Case Reductions and Homomorphic Cryptosystems[C]// Springer. Advances in Cryptology-EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 2016: 528-558. |
[79] | CHILLOTTI I, GAMA N, GEORGIEVA M, et al. TFHE: Fast Fully Homomorphic Encryption Over the Torus[J]. Journal of Cryptology, 2020, 33(1): 34-91. |
[80] | MICCIANCIO D, SORRELL J. Ring Packing and Amortized FHEW Bootstrapping[J]. (2019-10-06)[2024-03-30]. https://eprint.iacr.org/2018/532. |
[81] | ALBRECHT M, CHASE M, CHEN Hao, et al. Homomorphic Encryption Standard[J]. Protecting Privacy through Homo-Morphic Encryption, 2021: 31-62. |
[82] | ESPITAU T, JOUX A, KHARCHENKO N. On a Hybrid Approach to Solve Small Secret LWE[J]. (2020-06-01)[2024-04-01]. https://eprint.iacr.org/2020/515. |
[83] | MICCIANCIO D, POLYAKOV Y. Bootstrapping in FHEW-Like Cryptosystems[C]// ACM. Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography. New York: ACM, 2021: 17-28. |
[84] | LEE Y, MICCIANCIO D, KIM A, et al. Efficient FHEW Bootstrapping with Small Evaluation Keys, and Applications to Threshold Homomorphic Encryption[J]. ( 2023-06-10)[2024-04-01]. https://eprint.iacr.org/2022/198. |
[85] | CHILLOTTI I, JOYE M, PAILLIER P. Programmable Bootstrapping Enables Efficient Homomorphic Inference of Deep Neural Networks[C]// Springer. Cyber Security Cryptography and Machine Learning:5th International Symposium. Heidelberg: Springer, 2021: 1-19. |
[86] | CHILLOTTI I, GAMA N, GEORGIEVA M, et al. Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping for TFHE[C]// Springer. International Conference on the Theory and Application of Cryptology and Information Security. Heidelberg: Springer, 2017: 377-408. |
[87] | CHILLOTTI I, LIGIER D, ORFILA J B, et al. Improved Programmable Bootstrapping with Larger Precision and Efficient Arithmetic Circuits for TFHE[C]// Springer. Advances in Cryptology-ASIACRYPT 2021: 27th International Conference on the Theory and Application of Cryptology and Information Security. Heidelberg: Springer, 2021: 670-699. |
[88] | YANG Zhaomin, XIE Xiang, SHEN Huajie, et al. TOTA: Fully Homomorphic Encryption with Smaller Parameters and Stronger Security[J]. (2021-10-07)[2024-04-01]. https://eprint.iacr.org/2021/1347. |
[89] | LI Baiyu, MICCIANCIO D. On the Security of Homomorphic Encryption on Approximate Numbers[C]// Springer. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 2021: 648-677. |
[90] | FAUZI P, HOVD M N, RADDUM H. On the IND-CCA1 Security of FHE Schemes[J]. Cryptography, 2022, 6(1): 13-20. |
[91] | LAI Junzuo, DENG R H, MA Changshe, et al. CCA-Secure Keyed-Fully Homomorphic Encryption[C]// Springer. Public-Key Cryptography-PKC 2016: 19th IACR International Conference on Practice and Theory in Public-Key Cryptography. Heidelberg: Springer, 2016: 70-98. |
[1] | 林湛航, 向广利, 李祯鹏, 徐子怡. 基于同态加密的前馈神经网络隐私保护方案[J]. 信息网络安全, 2024, 24(9): 1375-1385. |
[2] | 郭倩, 赵津, 过弋. 基于分层聚类的个性化联邦学习隐私保护框架[J]. 信息网络安全, 2024, 24(8): 1196-1209. |
[3] | 李增鹏, 王思旸, 王梅. 隐私保护近邻检测研究[J]. 信息网络安全, 2024, 24(6): 817-830. |
[4] | 傅彦铭, 陆盛林, 陈嘉元, 覃华. 基于深度强化学习和隐私保护的群智感知动态任务分配策略[J]. 信息网络安全, 2024, 24(3): 449-461. |
[5] | 王南, 袁也, 杨浩然, 文周之, 苏明, 刘晓光. 环保大数据在区块链中的隐私计算[J]. 信息网络安全, 2024, 24(10): 1515-1527. |
[6] | 宋玉涵, 祝跃飞, 魏福山. 一种基于AdaBoost模型的区块链异常交易检测方案[J]. 信息网络安全, 2024, 24(1): 24-35. |
[7] | 许可, 李嘉怡, 蒋兴浩, 孙锬锋. 一种基于轮廓稀疏对抗的视频步态隐私保护算法[J]. 信息网络安全, 2024, 24(1): 48-59. |
[8] | 赖成喆, 赵益宁, 郑东. 基于同态加密的隐私保护与可验证联邦学习方案[J]. 信息网络安全, 2024, 24(1): 93-105. |
[9] | 俞惠芳, 乔一凡, 孟茹. 面向区块链金融的抗量子属性基门限环签密方案[J]. 信息网络安全, 2023, 23(7): 44-52. |
[10] | 唐雨, 张驰. 一种基于Intel SGX的信息中心网络隐私保护方案[J]. 信息网络安全, 2023, 23(6): 55-65. |
[11] | 李增鹏, 王梅, 陈梦佳. 新形态伪随机函数研究[J]. 信息网络安全, 2023, 23(5): 11-21. |
[12] | 杜卫东, 李敏, 韩益亮, 王绪安. 基于密文转换的高效通用同态加密框架[J]. 信息网络安全, 2023, 23(4): 51-60. |
[13] | 尹曙, 陈兴蜀, 朱毅, 曾雪梅. 基于字符空间构造的域名匿名化算法[J]. 信息网络安全, 2023, 23(4): 80-89. |
[14] | 郭瑞, 魏鑫, 陈丽. 工业物联网环境下可外包的策略隐藏属性基加密方案[J]. 信息网络安全, 2023, 23(3): 1-12. |
[15] | 李晓华, 王苏杭, 李凯, 徐剑. 一种支持隐私保护的传染病人际传播分析模型[J]. 信息网络安全, 2023, 23(3): 35-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||