信息网络安全 ›› 2024, Vol. 24 ›› Issue (8): 1265-1276.doi: 10.3969/j.issn.1671-1122.2024.08.012
收稿日期:
2024-05-23
出版日期:
2024-08-10
发布日期:
2024-08-22
通讯作者:
刘彦飞 作者简介:
王文涛(1998—),男,重庆,硕士研究生,主要研究方向为复杂网络建模与分析、数据挖掘、机器学习|刘彦飞(1985—),男,重庆,研究员,博士,主要研究方向为复杂网络建模与分析、数据挖掘、机器学习、知识图谱|毛博文(1980—),男,天津,正高级工程师,博士,主要研究方向为网络空间治理、公共安全知识工程|余成波(1965—),男,重庆,教授,博士,主要研究方向为信息传输与通信、自动化处理
基金资助:
WANG Wentao1, LIU Yanfei1,2,3(), MAO Bowen2, YU Chengbo1
Received:
2024-05-23
Online:
2024-08-10
Published:
2024-08-22
摘要:
在大规模复杂网络空间中,快速识别结构洞节点对于病毒和舆情的传播控制具有重要意义。针对现有识别结构洞节点的方法在网络结构发生变化时,识别精度不高的问题,文章基于多维属性映射与融合,提出一种结合邻接信息熵与邻接中心性的结构洞节点识别算法。该算法将加权的邻接信息熵作为邻居节点的信息量,使用邻接中心性度量节点传播这些邻居节点信息量的重要性,通过将结构洞节点的局部属性表示为节点传播信息的能力,识别网络中的关键结构洞节点。实验结果表明,在不同网络规模和网络结构的数据集下,该算法的ξ、τ和网络平均信息熵3个评估指标的总得分分别为0.470、1.679和4.027,优于现有算法,具有更优越和稳定的性能,且将该算法应用于大规模网络中仍然具有较低的时间成本。
中图分类号:
王文涛, 刘彦飞, 毛博文, 余成波. 面向多维属性融合的加权网络结构洞节点发现算法[J]. 信息网络安全, 2024, 24(8): 1265-1276.
WANG Wentao, LIU Yanfei, MAO Bowen, YU Chengbo. Weighted Network Structural Hole Node Discovery Algorithm for Multi-Dimensional Attribute Fusion[J]. Netinfo Security, 2024, 24(8): 1265-1276.
表2
不同算法性能对比
算法 | |||
---|---|---|---|
network security | soc-sign-bitcoinalpha | netscience | |
DC | 0.115 | 0.148 | 0.047 |
BC | 0.226 | 0.192 | 0.048 |
SHDD | 0.156 | 0.124 | 0.045 |
NSCH | 0.126 | 0.203 | 0.048 |
AIEAC | 0.223 | 0.198 | 0.049 |
算法 | |||
network security | soc-sign-bitcoinalpha | netscience | |
DC | 0.082 | 0.832 | 0.845 |
BC | 0.056 | 0.786 | 0.842 |
SHDD | 0.048 | 0.859 | 0.848 |
NSCH | 0.144 | 0.776 | 0.843 |
AIEAC | 0.056 | 0.781 | 0.842 |
算法 | 网络平均剩余信息熵 | ||
network security | soc-sign-bitcoinalpha | netscience | |
DC | 1.65 | 0.987 | 1.860 |
BC | 1.25 | 0.933 | 1.851 |
SHDD | 1.28 | 1.138 | 1.877 |
NSCH | 1.43 | 0.954 | 1.844 |
AIEAC | 1.25 | 0.932 | 1.845 |
表3
不同算法下top-8节点对比
DC | BC | SHDD | NSCH | 仅邻接 信息熵 | 仅邻接 中心性 | AIEAC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | 值 | ID | 值 | ID | 值 | ID | 值 | ID | 值 | ID | 值 | ID | 值 |
10 | 0.44 | 31 | 0.58 | 268 | 1 | 10 | 117 | 10 | 121.5 | 10 | 106.5 | 10 | 104.9 |
31 | 0.32 | 10 | 0.55 | 87 | 1 | 31 | 79 | 31 | 87.6 | 31 | 81.5 | 31 | 77.6 |
57 | 0.12 | 53 | 0.19 | 31 | 0.95 | 60 | 15 | 57 | 26.0 | 60 | 17.5 | 60 | 13.1 |
56 | 0.09 | 57 | 0.1 | 10 | 0.94 | 79 | 12 | 56 | 20.1 | 135 | 14.2 | 57 | 12.1 |
60 | 0.09 | 135 | 0.09 | 53 | 0.77 | 135 | 11 | 60 | 16.1 | 53 | 13 | 135 | 6.4 |
2 | 0.08 | 60 | 0.08 | 60 | 0.76 | 120 | 5 | 135 | 15.9 | 57 | 10.9 | 53 | 4.7 |
17 | 0.08 | 56 | 0.08 | 135 | 0.73 | 54 | 2 | 61 | 13.2 | 2 | 8.0 | 230 | 4.6 |
61 | 0.08 | 68 | 0.07 | 230 | 0.72 | 230 | 0 | 79 | 11.8 | 51 | 6.2 | 56 | 4.4 |
[1] | ZHOU Jianlin, ZENG An, FAN Ying, et al. Identifying Important Scholars via Directed Scientific Collaboration Networks[J]. Scientometrics, 2018, 114: 1327-1343. |
[2] | TIAN Zhao, JIA Limin, DONG Honghui, et al. Analysis of Urban Road Traffic Network Based on Complex Network[J]. Procedia Engineering, 2016, 137: 537-546. |
[3] | AL-TARAWNEH A, AL-SARAIREH J. Efficient Detection of Hacker Community Based on Twitter Data Using Complex Networks and Machine Learning Algorithm[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(6): 12321-12337. |
[4] | TIAN Jiyang. Research on Detection of Suspicious Money Laundering Based on Complex Transaction Network[D]. Heifei: Heifei University of Technology, 2022. |
田继阳. 基于复杂交易网络的可疑洗钱行为识别方法研究[D]. 合肥: 合肥工业大学, 2022. | |
[5] | DUAN Pinsheng, ZHOU Jianliang, GOH Y M. Spatial-Temporal Analysis of Safety Risks in Trajectories of Construction Workers Based on Complex Network Theory[EB/OL]. [2024-02-10]. https://www.sciencedirect.com/science/article/abs/pii/S1474034623001180?via%3Dihub. |
[6] | LI Ning, HUANG Qian, GE Xiaoyu, et al. A Review of the Research Progress of Social Network Structure[J]. Complexity, 2021(1): 1-14. |
[7] | BURT R S. Structural Holes: The Social Structure of Competition[M]. Cambridge: Harvard University Press, 2009. |
[8] |
ZHU Jiang, BAO Chongming, WANG Chongyun, et al. Discovery Algorithm for Top-k Structure Holes Based on Graph Structure Feature Analysis[J]. Computer Engineering, 2020, 46(5): 94-101, 108.
doi: 10.19678/j.issn.1000-3428.0054340 |
朱江, 包崇明, 王崇云, 等. 基于图结构特征分析的Top-k结构洞发现算法[J]. 计算机工程, 2020, 46(5): 94-101,108.
doi: 10.19678/j.issn.1000-3428.0054340 |
|
[9] |
LI Minjia, XU Guoyan, ZHU Shuai, et al. Influence Maximization Algorithm Based on Structure Hole and Degree Discount[J]. Journal of Computer Applications, 2018, 38(12): 3419-3424.
doi: 10.11772/j.issn.1001-9081.2018040920 |
李敏佳, 许国艳, 朱帅, 等. 基于结构洞和度折扣的影响力最大化算法[J]. 计算机应用, 2018, 38(12): 3419-3424.
doi: 10.11772/j.issn.1001-9081.2018040920 |
|
[10] | PENG Sancheng, ZHOU Yongmei, CAO Lihong, et al. Influence Analysis in Social Networks: A Survey[J]. Journal of Network and Computer Applications, 2018, 106: 17-32. |
[11] | SUN Xijing, SI Shoukui. Complex Network Algorithms and Applications[M]. Beijing: National Defense Industry Press, 2015. |
孙玺菁, 司守奎. 复杂网络算法与应用[M]. 北京: 国防工业出版社, 2015. | |
[12] | LI Gang, WANG Yuda, CUI Rong. KIC: An Extended K-Shell Decomposition Based on Improved Network Constraint Cofficient[J]. Journal of Modern Information, 2020, 40(12): 27-35. |
李钢, 王聿达, 崔蓉. KiC:一种结合“结构洞”约束值与K壳分解的社交网络关键节点识别算法[J]. 现代情报, 2020, 40(12): 27-35.
doi: 10.3969/j.issn.1008-0821.2020.12.003 |
|
[13] | ZHAO Zhili, LI Ding, SUN Yue, et al. Ranking Influential Spreaders Based on Both Node K-Shell and Structural Hole[EB/OL]. (2023-01-25)[2024-02-10]. https://www.sciencedirect.com/science/article/abs/pii/S095070512201259X?via%3Dihub. |
[14] | WANG Hao, WANG Jian, LIU Qian, et al. Identifying Key Spreaders in Complex Networks Based on Local Clustering Coefficient and Structural Hole Information[EB/OL]. [2024-02-10]. https://iopscience.iop.org/article/10.1088/1367-2630/ad0e89. |
[15] | BERAHMAND K, BOUYER A, SAMADI N. A New Centrality Measure Based on The Negative and Positive Effects of Clustering Coefficient for Identifying Influential Spreaders in Complex Networks[J]. Chaos, Solitons and Fractals: The Interdisciplinary Journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 2018, 110: 41-54. |
[16] |
YANG Jie, ZHANG Mingyang, RUI Xiaobin, el al. Influence Maximization Algorithm Based on Node Coverage and Structural Hole[J]. Journal of Computer Applications, 2022, 42(4): 1155-1161.
doi: 10.11772/j.issn.1001-9081.2021071256 |
杨杰, 张名扬, 芮晓彬, 等. 融合节点覆盖范围和结构洞的影响力最大化算法[J]. 计算机应用, 2022, 42(4): 1155-1161.
doi: 10.11772/j.issn.1001-9081.2021071256 |
|
[17] | GAO Juyuan, WANG Zhixiao, RUI Xiaobin, el al. Node Coverage Based on Algorithm for Influence Maximization[J]. Computer Engineering and Design, 2019, 40(8): 2211-2215, 2246. |
高菊远, 王志晓, 芮晓彬, 等. 基于节点覆盖范围的影响力最大化算法[J]. 计算机工程与设计, 2019, 40(8): 2211-2215,2246. | |
[18] | ZHAO Linhai, LI Yingjie, WU Y J. An Identification Algorithm of Systemically Important Financial Institutions Based on Adjacency Information Entropy[J]. Computational Economics, 2022, 59(4): 1735-1753. |
[19] | HUANG Wencheng, LI Haoran, YIN Yanhui, et al. Node Importance Identification of Unweighted Urban Rail Transit Network: An Adjacency Information Entropy Based Approach[J]. Reliability Engineering and System Safety, 2024(2): 1-16. |
[20] | XU Xiang, ZHU Cheng, WANG Qingyong, et al. Identifying Vital Nodes in Complex Networks by Adjacency Information Entropy[EB/OL]. (2020-02-14)[2024-03-10]. https://pubmed.ncbi.nlm.nih.gov/32060330/. |
[21] | KUMAR S, SPEZZANO F, SUBRAHMANIAN V S, et al. Edge Weight Prediction in Weighted Signed Networks[C]// IEEE. 2016 IEEE 16th International Conference on Data Mining(ICDM). New York: IEEE, 2016: 221-230. |
[22] | KUMAR S, HOOI B, MAKHIJA D, et al. Rev2: Fraudulent User Prediction in Rating Platforms[C]// ACM. The Eleventh ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 333-341. |
[23] | NEWMAN M E. Finding Community Structure in Networks Using The Eigenvectors of Matrices[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(3): 6104-6126. |
[24] | LI Peng, WANG Shilin, CHEN Guangwu, et al. Identifying Key Nodes in Complex Networks Based on Local Structural Entropy and Clustering Coefficient[EB/OL]. (2022-08-30)[2024-02-10]. https://onlinelibrary.wiley.com/doi/10.1155/2022/8928765. |
[25] | LU Mengke. Node Importance Evaluation Based on Neighborhood Structure Hole and Improved TOPSIS[EB/OL]. (2020-05-30)[2024-02-10]. https://www.sciencedirect.com/science/article/abs/pii/S138912861931031X. |
[1] | 秦元庆, 董泽阳, 韩汶君. 一种基于任务和可信等级的数控网络跨域互操作方法[J]. 信息网络安全, 2024, 24(8): 1143-1151. |
[2] | 杜晔, 田晓清, 李昂, 黎妹红. 基于改进鲸鱼算法优化SVM的软件缺陷检测方法[J]. 信息网络安全, 2024, 24(8): 1152-1162. |
[3] | 夏辉, 钱祥运. 基于特征空间相似的隐形后门攻击[J]. 信息网络安全, 2024, 24(8): 1163-1172. |
[4] | 许楷文, 周翊超, 谷文权, 陈晨, 胡晰远. 基于多尺度特征融合重建学习的深度伪造人脸检测算法[J]. 信息网络安全, 2024, 24(8): 1173-1183. |
[5] | 徐茹枝, 张凝, 李敏, 李梓轩. 针对恶意软件的高鲁棒性检测模型研究[J]. 信息网络安全, 2024, 24(8): 1184-1195. |
[6] | 郭倩, 赵津, 过弋. 基于分层聚类的个性化联邦学习隐私保护框架[J]. 信息网络安全, 2024, 24(8): 1196-1209. |
[7] | 张兴兰, 李登祥. 基于Grover量子搜索算法的MD5碰撞攻击模型[J]. 信息网络安全, 2024, 24(8): 1210-1219. |
[8] | 孙中岫, 彭诚, 范伟. 基于无证书签名的5G系统广播消息身份认证协议[J]. 信息网络安全, 2024, 24(8): 1220-1230. |
[9] | 陈昊然, 刘宇, 陈平. 基于大语言模型的内生安全异构体生成方法[J]. 信息网络安全, 2024, 24(8): 1231-1240. |
[10] | 郭钰铮, 郭春, 崔允贺, 李显超. 基于随机博弈网的窃密木马诱导式博弈模型[J]. 信息网络安全, 2024, 24(8): 1241-1251. |
[11] | 赵伟, 任潇宁, 薛吟兴. 基于集成学习的成员推理攻击方法[J]. 信息网络安全, 2024, 24(8): 1252-1264. |
[12] | 邢长友, 王梓澎, 张国敏, 丁科. 基于预训练Transformers的物联网设备识别方法[J]. 信息网络安全, 2024, 24(8): 1277-1290. |
[13] | 吕秋云, 周凌飞, 任一支, 周士飞, 盛春杰. 一种全生命周期可控的公共数据共享方案[J]. 信息网络安全, 2024, 24(8): 1291-1305. |
[14] | 黄旺旺, 周骅, 王代强, 赵麒. 基于国密SM9的物联网可重构密钥安全认证协议设计[J]. 信息网络安全, 2024, 24(7): 1006-1014. |
[15] | 张晓均, 张楠, 郝云溥, 王周阳, 薛婧婷. 工业物联网系统基于混沌映射三因素认证与密钥协商协议[J]. 信息网络安全, 2024, 24(7): 1015-1026. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||