信息网络安全 ›› 2024, Vol. 24 ›› Issue (4): 534-544.doi: 10.3969/j.issn.1671-1122.2024.04.004
刘斯诺1,2, 阮树骅1,2(), 陈兴蜀1,2, 郑涛1,2
收稿日期:
2024-01-29
出版日期:
2024-04-10
发布日期:
2024-05-16
通讯作者:
阮树骅 作者简介:
刘斯诺(1999—),男,广东,硕士研究生,主要研究方向为云计算安全|阮树骅(1966—),女,浙江,副教授,硕士,主要研究方向为云计算与大数据安全、区块链安全|陈兴蜀(1968—),女,贵州,教授,博士,主要研究方向为可信计算、云计算与大数据安全|郑涛(1994—)男,四川,博士研究生,主要研究方向为移动安全和软件安全分析
基金资助:
LIU Sinuo1,2, RUAN Shuhua1,2(), CHEN Xingshu1,2, ZHENG Tao1,2
Received:
2024-01-29
Online:
2024-04-10
Published:
2024-05-16
摘要:
随着云上威胁的种类和攻击路径更加多样化,单一维度的威胁数据难以准确刻画复杂多变的威胁行为。文章提出一种基于扩展伯克利数据包过滤器(extended Berkeley Packet Filter,eBPF)的威胁观测系统ETOS(eBPF-Based Threat Observability System),首先,通过评估威胁行为中各动作的危险程度,对关键动作分层分类设置观测点位,从而在目标机器上实现按需动态激活eBPF探针,获取多维结构化威胁行为数据,能够有效表达云环境中的威胁行为,降低数据分析的预处理成本;然后,设计一种通用eBPF探针模板,实现探针库的自动化扩展;最后,文章在容器云平台上复现了18个容器逃逸通用漏洞披露(Common Vulnerabilities and Exposures,CVE),并利用ETOS观测威胁行为。实验结果表明,ETOS能够在多个层次观测威胁行为,输出多维结构化威胁数据,引入系统和网络的总体开销均低于2%,满足云平台运行要求。
中图分类号:
刘斯诺, 阮树骅, 陈兴蜀, 郑涛. 基于eBPF的云上威胁观测系统[J]. 信息网络安全, 2024, 24(4): 534-544.
LIU Sinuo, RUAN Shuhua, CHEN Xingshu, ZHENG Tao. An eBPF-Based Threat Observability System for Cloud-Oriented Environment[J]. Netinfo Security, 2024, 24(4): 534-544.
表3
观测点位及其映射探针
观测点位 | 探针名称 |
---|---|
nsSwtich(sys-kernel-kfunc, new_ns) | sys/kernel/kfunc/nsSwtich(new_ns) |
preKCred(sys-kernel-kfunc, daemon) | sys/kernel/kfunc/preKCred(daemon) |
commitCred(sys-kernel-kfunc, cred->uid, cred->gid) | sys/kernel/kfunc/commitCred(cred->uid, cred->gid) |
setns(sys-si-syscall, fd, nstype) | sys/si/syscall/setns(fd, nstype) |
socket(net, src_ip, src_pot, dst_ip, dst_port, fd) | net/socket(sip, sp, dip, sp, fd) |
tcp(net-L4, src_ip, src_port, dst_ip, dst_port) | net/L4/tcpconn(sip, sp, dip, sp) |
http(net-L7, src_ip, src_port, dst_ip, dst_port, paylaod) | net/L7/http(sip, sp, dip, sp, payload) |
[1] | CHAYKOVSKY V. STRACE[EB/OL]. [2024-01-23]. https://strace.io/. |
[2] | SYSSTAT. Sysstat Home Page[EB/OL]. (2023-12-17)[2024-01-23]. https://sysstat.github.io/. |
[3] | MCCANNE S, JACOBSON V. TCPDUMP & LiBPCAP[EB/OL]. [2024-01-23]. https://www.tcpdump.org/. |
[4] | WIKIPEDIA. Observability[EB/OL]. (2023-12-21)[2024-01-23]. https://en.wikipedia.org/w/index.php?title=Observability&oldid=1191145038. |
[5] | CALAVERA D, FONTANA L. Linux Observability with BPF: Advanced Programming for Performance Analysis and Networking[M]. Boston: O’Reilly Media, 2019. |
[6] | WIKIPEDIA. eBPF[EB/OL]. (2024-01-05)[2024-01-23]. https://en.wikipedia.org/w/index.php?title=EBPF&oldid=1193818980. |
[7] | Tencent Cloud Computing (Beijing) Co., Ltd. Tencent Cloud Container Security White Paper[EB/OL]. (2021-11-09)[2024-01-23]. https://cloud.tencent.com/developer/article/1898557. |
腾讯云计算北京有限公司. 腾讯云容器安全白皮书[EB/OL]. (2021-11-09)[2024-01-23]. https://cloud.tencent.com/developer/article/1898557. | |
[8] | The/proc Filesystem. The Linux Kernel Documentation[EB/OL]. [2024-01-23]. https://www.kernel.org/doc/html/next/filesystems/proc.html. |
[9] | SYED H J, GANI A, NASARUDDIN F H, et al. CloudProcMon: A Non-Intrusive Cloud Monitoring Framework[J]. IEEE Access, 2018, 6: 44591-44606. |
[10] | LAI C A, KIMBALL J, ZHU Tao, et al. MilliScope: A Fine-Grained Monitoring Framework for Performance Debugging of N-Tier Web Services[C]// IEEE. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). New York: IEEE, 2017: 92-102. |
[11] | CORDINGLY R, YU Hanfei, HOANG V, et al. The Serverless Application Analytics Framework: Enabling Design Trade-off Evaluation for Serverless Software[C]// ACM. The 2020 Sixth International Workshop on Serverless Computing. New York: ACM, 2021: 67-72. |
[12] | DATTA P, KUMAR P, MORRIS T, et al. Valve: Securing Function Workflows on Serverless Computing Platforms[C]// ACM. The Web Conference 2020. New York: ACM, 2020: 939-950. |
[13] | DATTA P, POLINSKY I, INAM M A, et al. {ALASTOR}: Reconstructing the Provenance of Serverless Intrusions[C]// USENIX. 31st USENIX Security Symposium (USENIX Security 22). Berkeley: USENIX, 2022: 2443-2460. |
[14] | CHEN Pengfei, QI Yong, HOU Di. CauseInfer: Automated End-to-End Performance Diagnosis with Hierarchical Causality Graph in Cloud Environment[J]. IEEE Transactions on Services Computing, 2019, 12(2): 214-230. |
[15] | WANG Yulong, WANG Qixu, CHEN Xingshu, et al. ContainerGuard: A Real-Time Attack Detection System in Container-Based Big Data Platform[J]. IEEE Transactions on Industrial Informatics, 2022, 18(5): 3327-3336. |
[16] | ZHAN Mengqi, LI Yang, YANG Huiran, et al. Coda: Runtime Detection of Application-Layer CPU-Exhaustion DoS Attacks in Containers[J]. IEEE Transactions on Services Computing, 2022, 16(3): 1-12. |
[17] | ZOU Zhuping, XIE Yulai, HUANG Kai, et al. A Docker Container Anomaly Monitoring System Based on Optimized Isolation Forest[J]. IEEE Transactions on Cloud Computing, 2022, 10(1): 134-145. |
[18] | SAKURABA M, KAWASAKI J, MIYASAKA T, et al. An Anomaly Detection Approach by Aiml in Ip Networks with eBPF-Based Observability[C]// IEEE. 2023 24st Asia-Pacific Network Operations and Management Symposium (APNOMS). New York, 2023: 171-176. |
[19] | WU Shenglin, LIU Wanggen, YAN Ming, et al. A Real-Time Anomaly Detection System for Container Clouds Based on Unsupervised System Call Rule Generation[J]. Netinfo Security, 2023, 23(12): 91-102. |
吴圣麟, 刘汪根, 严明, 等. 基于无监督系统调用规则生成的容器云实时异常检测系统[J]. 信息网络安全, 2023, 23(12): 91-102. | |
[20] | LIU Chang, CAI Zhengong, WANG Bingshen, et al. A Protocol-Independent Container Network Observability Analysis System Based on eBPF[C]// IEEE. 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). New York: IEEE, 2020: 697-702. |
[21] | LIU Chang. Methodology and Practice of Container Network Observability Based on eBPF[D]. Hangzhou: Zhejiang University, 2021. |
刘畅. 基于eBPF的容器网络可观测性方法与实践[D]. 杭州: 浙江大学, 2021. | |
[22] | LEVIN J, BENSON T A. ViperProbe: Rethinking Microservice Observability with eBPF[C]// IEEE. 2020 IEEE 9th International Conference on Cloud Networking (CloudNet). New York: IEEE, 2020: 1-8. |
[23] | WANG Zhe, MA Teng, KONG Linghe, et al. Zero Overhead Monitoring for Cloud-Native Infrastructure Using {RDMA}[C]// USENIX. 2022 USENIX Annual Technical Conference (USENIX ATC 22). Berkeley: USENIX, 2022: 639-654. |
[24] | LIN Xin, LEI Lingguang, WANG Yuewu, et al. A Measurement Study on Linux Container Security: Attacks and Countermeasures[C]// ACM. The 34th Annual Computer Security Applications Conference. New York: ACM, 2018: 418-429. |
[25] | DAS-SECURITY Co., Ltd. Docker Port 2375 Vulnerability Network-Wide Security Risk Report[EB/OL]. (2017-02-22)[2024-01-22]. https://cloud.tencent.com/developer/article/1090829. |
杭州安恒信息技术股份有限公司. Docker 2375端口漏洞全网安全风险报告[EB/OL]. (2017-02-22)[2024-01-22]. https://cloud.tencent.com/developer/article/1090829. | |
[26] | IOVISOR/BCC[EB/OL]. IO Visor Project, 2024[2024-01-23]. https://github.com/iovisor/bcc. |
[27] | WIKIPEDIA. Ftrace[EB/OL]. (2023-11-29)[2024-01-23]. . |
[28] | DAMATO J. ltrace[EB/OL]. (2023-11-29)[2024-01-23]. https://github.com/ice799/ltrace. |
[1] | 赵谱, 崔巍, 郝蓉, 于佳. 一种针对El-Gamal数字签名生成的安全外包计算方案[J]. 信息网络安全, 2019, 19(3): 81-86. |
[2] | 张振峰, 张志文, 王睿超. 网络安全等级保护2.0云计算安全合规能力模型[J]. 信息网络安全, 2019, 19(11): 1-7. |
[3] | 吕从东, 韩臻. 基于IP模型的云计算安全模型[J]. 信息网络安全, 2018, 18(11): 27-32. |
[4] | 陈晓兵, 陈凯, 徐震, 王利明. 面向工业控制网络的安全监管方案[J]. 信息网络安全, 2016, 16(7): 61-70. |
[5] | 张如辉, 郭春梅, 毕学尧. 美国政府云计算安全策略分析与思考[J]. 信息网络安全, 2015, 15(9): 257-261. |
[6] | 陶政, 胡俊, 吴欢, 杨静. 云租户虚拟机主动可信验证机制的研究与应用[J]. 信息网络安全, 2015, 15(11): 21-26. |
[7] | 李慧, 张茹, 刘建毅, 赵静. 基于攻击树模型的数传电台传输安全性评估[J]. 信息网络安全, 2014, 14(8): 71-76. |
[8] | 许友松;郑丽娜. 云计算安全体系技术框架与等保规范要求[J]. , 2013, 13(Z): 0-0. |
[9] | 郝文江. 互联网开源数据存储与分析技术研究[J]. , 2013, 13(7): 0-0. |
[10] | 苏红旗;李咏梅;许天然. 基于USB的移动数据采集系统接口应用研究[J]. , 2013, 13(7): 0-0. |
[11] | 商宗海;李奇;赵宝. 基于IBM移动Agent的局域网信息采集和预处理器[J]. , 2013, 13(3): 0-0. |
[12] | 段翼真;王晓程;刘忠. 云计算安全:概念、现状与关键技术[J]. , 2012, 12(8): 0-0. |
[13] | 李战宝;潘卓. 透视“震网”病毒[J]. , 2011, 11(9): 0-0. |
[14] | 邓志龙. 基于ARM+Linux的高速数据采集系统[J]. , 2011, 11(6): 0-0. |
[15] | 廖立涛;周翔;江法;刘奇凡. 高速公路智能公安交通管理系统模型设计[J]. , 2010, (10): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||