信息网络安全 ›› 2024, Vol. 24 ›› Issue (3): 398-410.doi: 10.3969/j.issn.1671-1122.2024.03.006
收稿日期:
2024-01-29
出版日期:
2024-03-10
发布日期:
2024-04-03
通讯作者:
魏松杰
E-mail:swei@njust.edu.cn
作者简介:
杨志鹏(1998—),男,新疆,硕士研究生,CCF学生会员,主要研究方向为网络安全态势感知与深度学习|刘代东(1999—),男,湖南,硕士研究生,CCF学生会员,主要研究方向为区块链技术应用与网络安全|袁军翼(1999—),男,江苏,硕士研究生,CCF学生会员,主要研究方向为恶意软件检测与网络安全|魏松杰(1977—),男,天津,副教授,博士,CCF高级会员,主要研究方向为网络与信息安全、移动恶意检测、软件定义网络和安全风险评估
基金资助:
YANG Zhipeng1, LIU Daidong1, YUAN Junyi2, WEI Songjie1()
Received:
2024-01-29
Online:
2024-03-10
Published:
2024-04-03
Contact:
WEI Songjie
E-mail:swei@njust.edu.cn
摘要:
针对传统网络安全态势感知方法无法高效整合多节点数据、获取全局网络安全态势的问题,文章提出了一种基于自注意力机制(Self-Attention Mechanism)、径向基函数(Radial Basis Function,RBF)神经网络与卷积神经网络(Convolutional Neural Network,CNN)的网络局域安全态势融合方法SA-RBF-CNN(Self-Attention-RBF-CNN)。通过自注意力机制,模型能有效识别并强调关键节点,增强对全局安全态势的认识。同时,改进的RBF结构与CNN结合能进一步提炼特征,增强模型对复杂数据模式的捕捉能力。实验结果显示,SA-RBF-CNN在识别网络安全态势预测的关键指标上优于其他类似方法,与传统态势感知方法相比,其提升了计算速度,减少了通信开销,证明该模型具有一定的实际应用价值。
中图分类号:
杨志鹏, 刘代东, 袁军翼, 魏松杰. 基于自注意力机制的网络局域安全态势融合方法研究[J]. 信息网络安全, 2024, 24(3): 398-410.
YANG Zhipeng, LIU Daidong, YUAN Junyi, WEI Songjie. Research on Network Local Security Situation Fusion Method Based on Self-Attention Mechanism[J]. Netinfo Security, 2024, 24(3): 398-410.
表1
各威胁危险度
威胁名称 | 威胁中文 名称 | 威胁 危险度 | 描述 |
---|---|---|---|
Normal | 正常 | 0.000 | 未受到攻击 |
Fuzzers | 模糊攻击 | 0.925 | 通过提供随机生成的数据使 网络暂停 |
Analysis | 分析攻击 | 0.961 | 包含端口扫描、垃圾邮件等不同的攻击 |
Backdoors | 后门 | 1.190 | 绕过系统安全机制秘密访问数据 |
DoS | 拒绝服务 攻击 | 0.914 | 恶意尝试使服务器或网络资源对 用户不可用 |
Exploits | 渗透攻击 | 1.202 | 利用程序的漏洞获得控制权 |
Generic | 通用攻击 | 0.913 | 一种适用于所有分组密码的攻击 |
Reconnaissance | 侦察攻击 | 0.942 | 使攻击者获得更多有关受害者的 信息 |
Shellcode | 漏洞代码 | 1.301 | 一段利用软件漏洞执行的代码 |
Worms | 恶性计算机 病毒 | 1.144 | 复制自身以传播到其他计算机的 病毒 |
[1] | D’AMBROSIO B, TAKIKAWA M, FITZGERALD J, et al. Security Situation Assessment and Response Evaluation (SSARE)[C]// IEEE. Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX’01. New York:IEEE, 2001: 387-394. |
[2] | GONG Jian, ZANG Xiaodong, SU Qi, et al. A Review of Network Security Situation Awareness[J]. Journal of Software, 2017, 28(4): 1010-1026. |
龚俭, 臧小东, 苏琪, 等. 网络安全态势感知综述[J]. 软件学报, 2017, 28(4):1010-1026. | |
[3] |
ENDSLEY M R. Design and Evaluation for Situation Awareness Enhancement[J]. Proceedings of the Human Factors Society Annual Meeting, 1988, 32(2): 97-101.
doi: 10.1177/154193128803200221 URL |
[4] | BASS T. Multisensor Data Fusion for Next Generation Distributed Intrusion Detection Systems[J]. Proceedings of the IRIS National Symposium on Sensor and Data Fusion, 1999, 24(28): 24-27. |
[5] | BASS T. Intrusion Detection Systems and Multisensor Data Fusion[J]. Communications of the ACM, 2000, 43(4): 99-105. |
[6] | TAO Yuan, HUANG Tao, ZHANG Mohan, et al. Research and Development Trend Analysis of Key Technologies for Cyberspace Security Situation Awareness[J]. Netinfo Security, 2018, 18(8): 79-85. |
陶源, 黄涛, 张墨涵, 等. 网络安全态势感知关键技术研究及发展趋势分析[J]. 信息网络安全, 2018, 18(8):79-85. | |
[7] | HUSÁK M, KOMÁRKOVÁ J, BOU-HARB E, et al. Survey of Attack Projection, Prediction, and Forecasting in Cyber Security[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 640-660. |
[8] | HU Chuhang, LIU Guikai, LI Ming. A Network Security Situation Prediction Method Based on Attention-CNN-BiGRU[C]// IEEE. 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD). New York: IEEE, 2022: 257-262. |
[9] | XIE Lixia, WANG Yachao, YU Jinbo. Network Security Situation Awareness Based on Neural Networks[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(12): 1750-1760. |
谢丽霞, 王亚超, 于巾博. 基于神经网络的网络安全态势感知[J]. 清华大学学报(自然科学版), 2013, 53(12):1750-1760. | |
[10] | YU Qing, ZHENG Chonghui, DU Ye. Research on Key Technologies of Security Situation Assessment for the Virtual Layer of Cloud Platform[J]. Netinfo Security, 2020, 20(7): 53-59. |
余晴, 郑崇辉, 杜晔. 面向云平台虚拟层的安全态势评估关键技术研究[J]. 信息网络安全, 2020, 20(7):53-59. | |
[11] |
CHEN Zhihua. Research on Internet Security Situation Awareness Prediction Technology Based on Improved RBF Neural Network Algorithm[J]. Journal of Computational and Cognitive Engineering, 2022, 1(3): 103-108.
doi: 10.47852/bonviewJCCE149145205514 URL |
[12] | ELMAN J L. Distributed Representations, Simple Recurrent Networks, and Grammatical Structure[J]. Machine Learning, 1991, 7: 195-225. |
[13] |
ZHANG Haofang, KANG Chunying, XIAO Yao. Research on Network Security Situation Awareness Based on the LSTM-DT Model[J]. Sensors, 2021, 21(14): 4788.
doi: 10.3390/s21144788 URL |
[14] |
ZHANG Shengcai, FU Qiming, AN Dezhi. Network Security Situation Prediction Model Based on VMD Decomposition and DWOA Optimized BiGRU-ATTN Neural Network[J]. IEEE Access, 2023, 11: 129507-129535.
doi: 10.1109/ACCESS.2023.3333666 URL |
[15] |
GUO Qipeng, QIU Xipeng, XUE Xiangyang, et al. Low-Rank and Locality Constrained Self-Attention for Sequence Modeling[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(12): 2213-2222.
doi: 10.1109/TASLP.6570655 URL |
[16] |
MEI Xiaoguang, PAN E, MA Yong, et al. Spectral-Spatial Attention Networks for Hyperspectral Image Classification[J]. Remote Sensing, 2019, 11(8): 963.
doi: 10.3390/rs11080963 URL |
[17] | LI Jiyu, FU Zhangjie, ZHANG Yubin. An Image Information Hiding Algorithm Based on Cross-Domain Adversarial Adaptation[J]. Netinfo Security, 2023, 23(1): 93-102. |
李季瑀, 付章杰, 张玉斌. 一种基于跨域对抗适应的图像信息隐藏算法[J]. 信息网络安全, 2023, 23(1):93-102. | |
[18] | HU Chuhang, LIU Guikai, LI Ming. A Network Security Situation Prediction Method Based on Attention-CNN-BiGRU[C]// IEEE. 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD). New York: IEEE, 2022: 257-262. |
[19] |
ZHAO Dongmei, SHEN Pengcheng, ZENG Shuiguang. ALSNAP: Attention-Based Long and Short-Period Network Security Situation Prediction[J]. Ad Hoc Networks, 2023, 150: 103279.
doi: 10.1016/j.adhoc.2023.103279 URL |
[20] | CHENG Jiagen, QI Zhenghua, CHEN Tianfu. Network Security Situation Awareness Based on RBF Neural Network[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2019, 39(4):88-95. |
程家根, 祁正华, 陈天赋. 基于RBF神经网络的网络安全态势感知[J]. 南京邮电大学学报(自然科学版), 2019, 39(4):88-95. | |
[21] | YAO Chengpeng, YANG Yu, YIN Kun. Research on Network Security Situation Prediction Method Based on AM and LSTM Hybrid Neural Network[C]// IEEE. 2021 8th International Forum on Electrical Engineering and Automation (IFEEA). New York: IEEE, 2021: 322-330. |
[22] |
ZHAO Dongmei, SONG Huiqian, ZHANG Hongbin. Network Security Situation Assessment Based on Time Factor and Composite CNN Structure[J]. Computer Science, 2021, 48(12): 349-356.
doi: 10.11896/jsjkx.210400227 |
赵冬梅, 宋会倩, 张红斌. 基于时间因子和复合CNN结构的网络安全态势评估[J]. 计算机科学, 2021, 48(12):349-356.
doi: 10.11896/jsjkx.210400227 |
|
[23] |
CHANG Liwei, LIU Xiujuan, QIAN Yuhua, et al. Network Security Situation Awareness Model Based on Multi-Source Fusion of Convolutional Neural Networks[J]. Computer Science, 2023, 50(5): 382-389.
doi: 10.11896/jsjkx.220400134 |
常利伟, 刘秀娟, 钱宇华, 等. 基于卷积神经网络多源融合的网络安全态势感知模型[J]. 计算机科学, 2023, 50(5):382-389.
doi: 10.11896/jsjkx.220400134 |
|
[24] |
VAN P J M, PEDRYCZ W. A Fuzzy Extension of Saaty’s Priority Theory[J]. Fuzzy Sets and Systems, 1983, 11(1-3): 229-241.
doi: 10.1016/S0165-0114(83)80082-7 URL |
[25] | MOUSTAFA N, SLAY J. UNSW-NB15:A Comprehensive Dataset for Network Intrusion Detection Systems (UNSW-NB15 Network Dataset)[C]// IEEE. 2015 Military Communications and Information Systems Conference (MilCIS). New York: IEEE, 2015: 1-6. |
[26] | WANG Yixuan, ZHAO Bo, LI Weidong, et al. An Ontology-Centric Approach for Network Security Situation Awareness[C]// IEEE. 2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC). New York: IEEE, 2023: 777-787. |
[27] |
XIAO Lin, BOYD S. Fast Linear Iterations for Distributed Averaging[J]. Systems & Control Letters, 2004, 53(1): 65-78.
doi: 10.1016/j.sysconle.2004.02.022 URL |
[28] | MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-Efficient Learning of Deep Networks from Decentralized Data[C]// PMLR. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2017: 1273-1282. |
[1] | 江荣, 刘海天, 刘聪. 基于集成学习的无监督网络入侵检测方法[J]. 信息网络安全, 2024, 24(3): 411-426. |
[2] | 江魁, 卢橹帆, 苏耀阳, 聂伟. 基于Attention-GRU的SHDoS攻击检测研究[J]. 信息网络安全, 2024, 24(3): 427-437. |
[3] | 冯光升, 蒋舜鹏, 胡先浪, 马明宇. 面向物联网的入侵检测技术研究新进展[J]. 信息网络安全, 2024, 24(2): 167-178. |
[4] | 赵鹏程, 于俊清, 李冬. 一种基于深度学习的SRv6网络流量调度优化算法[J]. 信息网络安全, 2024, 24(2): 272-281. |
[5] | 金志刚, 丁禹, 武晓栋. 融合梯度差分的双边校正联邦入侵检测算法[J]. 信息网络安全, 2024, 24(2): 293-302. |
[6] | 薛羽, 张逸轩. 深层神经网络架构搜索综述[J]. 信息网络安全, 2023, 23(9): 58-74. |
[7] | 刘宇啸, 陈伟, 张天月, 吴礼发. 基于稀疏自动编码器的可解释性异常流量检测[J]. 信息网络安全, 2023, 23(7): 74-85. |
[8] | 蒋英肇, 陈雷, 闫巧. 基于双通道特征融合的分布式拒绝服务攻击检测算法[J]. 信息网络安全, 2023, 23(7): 86-97. |
[9] | 赵彩丹, 陈璟乾, 吴志强. 基于多通道联合学习的自动调制识别网络[J]. 信息网络安全, 2023, 23(4): 20-29. |
[10] | 谭柳燕, 阮树骅, 杨敏, 陈兴蜀. 基于深度学习的教育数据分类方法[J]. 信息网络安全, 2023, 23(3): 96-102. |
[11] | 徐占洋, 程洛飞, 程建春, 许小龙. 一种使用Bi-ADMM优化深度学习模型的方案[J]. 信息网络安全, 2023, 23(2): 54-63. |
[12] | 陈得鹏, 刘肖, 崔杰, 仲红. 一种基于双阈值函数的成员推理攻击方法[J]. 信息网络安全, 2023, 23(2): 64-75. |
[13] | 文伟平, 朱一帆, 吕子晗, 刘成杰. 针对品牌的网络钓鱼扩线与检测方案[J]. 信息网络安全, 2023, 23(12): 1-9. |
[14] | 刘军, 武志超, 吴建, 谭振华. 一种融合图像空间特征注意力机制的恶意代码识别模型[J]. 信息网络安全, 2023, 23(12): 29-37. |
[15] | 廖丽云, 张伯雷, 吴礼发. 基于代价敏感学习的物联网异常检测模型[J]. 信息网络安全, 2023, 23(11): 94-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||