信息网络安全 ›› 2023, Vol. 23 ›› Issue (10): 64-69.doi: 10.3969/j.issn.1671-1122.2023.10.009

• 入选论文 • 上一篇    下一篇

基于HPC的虚拟化平台异常检测技术研究与实现

邢凌凯1,2, 张健1,2()   

  1. 1.南开大学网络空间安全学院,天津 300350
    2.天津市网络与数据安全技术重点实验室,天津 300350
  • 收稿日期:2023-06-26 出版日期:2023-10-10 发布日期:2023-10-11
  • 通讯作者: 张健 E-mail:zhang.jian@nankai.edu.cn
  • 作者简介:邢凌凯(2001—),男,江苏,硕士研究生,主要研究方向为云安全、网络安全|张健(1968—),男,天津,正高级工程师,博士,CCF会员,主要研究方向为云安全、网络安全和系统安全
  • 基金资助:
    国家重点研发计划(2022YFB3103202);天津市重点研发计划(20YFZCGX00680);天津市新一代人工智能科技重大专项(19ZXZNGX00090)

Research and Implementation on Abnormal Behavior Detection Technology of Virtualization Platform Based on HPC

XING Lingkai1,2, ZHANG Jian1,2()   

  1. 1. College of Cyber Science, Nankai University, Tianjin 300350, China
    2. Tianjin Key Laboratory of Network and Data Security Technology, Tianjin 300350, China
  • Received:2023-06-26 Online:2023-10-10 Published:2023-10-11

摘要:

文章针对虚拟化平台异常行为检测问题提出一种基于硬件性能计数器 (Hardware Performance Counter,HPC)和集成学习的动态检测方法。该方法基于KVM虚拟化平台,采集平台运行样本时的HPC值,按照随机森林(Random Forest,RF)学习时产生的特征重要性分数进行特征筛选,提高RF分类模型的准确率,实现异常检测。文章在平台上采集了1040个良性程序样本和1040个恶意程序样本,在特征筛选阶段选取8个判断恶意样本的重要HPC事件。实验结果表明,特征筛选后的RF分类模型在测试集上可以达到95.38%的准确率,相较于特征筛选前的同类模型和其他传统机器学习模型具有更高的准确性和稳定性。

关键词: 异常行为检测, 虚拟化, 硬件性能计数器, 集成学习

Abstract:

This paper proposed a dynamic detection method based on Hardware Performance Counter(HPC) and ensemble learning to solve the abnormal behavior detection problem of virtualization platform. This method collected HPC values of samples running on the KVM virtualization platform, and used feature importance scores generated during RF learning to filter features, so as to improve the accuracy of RF classification model and realized anomaly detection. This paper collected 1040 benign program samples and 1040 malicious program samples on the platform, and selected 8 important HPC events to judge malicious samples in the feature selection stage. The experimental results show that the RF classification model after feature selection can reach 95.38% accuracy on the test set, which has higher accuracy and stability than the similar model before feature selection and other traditional machine learning models. The method proposed in this paper can effectively detect the abnormal behavior on the virtualization platform

Key words: abnormal behavior detection, virtualization, hardware performance counter, ensemble learning

中图分类号: