信息网络安全 ›› 2023, Vol. 23 ›› Issue (10): 70-76.doi: 10.3969/j.issn.1671-1122.2023.10.010

• 入选论文 • 上一篇    下一篇

基于神经网络的电子病历数据特征提取技术研究

秦一方1,2, 张健1,2(), 梁晨3   

  1. 1.南开大学计算机学院,天津 300350
    2.天津市网络与数据安全技术重点实验室,天津 300350
    3.天津市胸科医院,天津 300222
  • 收稿日期:2023-06-28 出版日期:2023-10-10 发布日期:2023-10-11
  • 通讯作者: 张健 E-mail:zhang.jian@nankai.edu.cn
  • 作者简介:秦一方(2001—),女,辽宁,硕士研究生,CCF会员,主要研究方向为数据安全|张健(1968—),男,天津,正高级工程师,博士,CCF会员,主要研究方向为云安全、网络安全和系统安全|梁晨(1965—),男,天津,高级工程师,本科,主要研究方向为网络安全、计算机网络
  • 基金资助:
    国家重点研发计划(2022YFB3103202);天津市重点研发计划(20YFZCGX00680);天津市新一代人工智能科技重大专项(19ZXZNGX00090)

Research on Feature Extraction Technology of Electronic Medical Record Data Based on Neural Networks

QIN Yifang1,2, ZHANG Jian1,2(), LIANG Chen3   

  1. 1. College of Computer, Nankai University, Tianjin 300350, China
    2. Tianjin Key Laboratory of Network and Data Security Technology, Tianjin 300350, China
    3. Tianjin Chest Hospital, Tianjin 300222, China
  • Received:2023-06-28 Online:2023-10-10 Published:2023-10-11

摘要:

随着《中华人民共和国数据安全法》等法律法规的实施,数据安全工作日益受到关注。电子病历包含公民医疗健康等敏感个人信息,为了保护电子病历数据的隐私安全,文章研究了电子病历数据特征提取技术,为实施数据安全防护提供技术支撑。文章提出了基于深度神经网络的电子病历数据特征提取方法,采用生成式对抗网络,通过文本生成的方法,将少量电子病历数据扩充为一个较大的数据集。随后利用卷积神经网络进行特征提取,并通过分类器产生分类结果,以实现电子病历数据的检测识别。实验结果表明,这种方法对于电子病历数据具有较好的特征提取效果。

关键词: 生成式对抗网络, 卷积神经网络, 特征提取, 文本生成

Abstract:

With the implementation of laws and regulations such as “Data Security Law of the People’s Republic of China”, data security is becoming increasingly important. Electronic medical records contain sensitive personal information such as citizens’ medical and health care. In order to protect the safety of the data, this paper studied the feature extraction technology of the data to provide technical support for the implementation of data security protection. This paper proposed a feature extraction method for electronic medical record data based on deep neural networks. Using generative adversarial networks, a small amount of electronic medical record data was expanded to a larger dataset through text generation methods. Then, the convolutional neural networks were used for feature extraction, and the classification results were generated by the classifier to detect and recognize the electronic medical record data. The experimental results show that this method has a good feature extraction effect for electronic medical record data.

Key words: generative adversarial networks, convolutional neural networks, feature extraction, text generation

中图分类号: