信息网络安全 ›› 2023, Vol. 23 ›› Issue (10): 1-7.doi: 10.3969/j.issn.1671-1122.2023.10.001
收稿日期:
2023-06-28
出版日期:
2023-10-10
发布日期:
2023-10-11
通讯作者:
张浩
E-mail:zhanghao@fzu.edu.cn
作者简介:
王智(1998—),男,山西,硕士研究生,CCF会员,主要研究方向为网络安全、机器学习|张浩(1981—),男,安徽,副教授,博士,CCF会员,主要研究方向为信息安全、安全大数据分析和计算智能算法|顾建军(1972—),男,江苏,教授,博士,主要研究方向为机器学习、神经网络和控制、生物医学工程和康复工程
基金资助:
WANG Zhi1,2, ZHANG Hao1,2(), Jason GU3
Received:
2023-06-28
Online:
2023-10-10
Published:
2023-10-11
摘要:
软件定义网络(Software Defined Networking,SDN)作为一种新兴的网络范式,在带来便利性的同时也引入了更为严峻的分布式拒绝服务攻击(Distributed Denial of Service Attacks,DDoS)风险。现有的模型通常是使用机器学习模型来检测DDoS攻击,忽略了模型给SDN控制器带来的额外开销。为了更加高效且精确地检测DDoS攻击,文章采取了多级检测模块的方式,即一级模块通过计算当前流量窗口的联合熵快速检测异常,二级模块采用半监督模型,并使用特征选择、multi-training算法、多重聚类等技术,通过训练多个局部模型提高检测性能。与现有的其他模型相比,该模型在多个数据集上均表现更好,拥有更好的检测精度和泛化能力。
中图分类号:
王智, 张浩, 顾建军. SDN网络中基于联合熵与多重聚类的DDoS攻击检测[J]. 信息网络安全, 2023, 23(10): 1-7.
WANG Zhi, ZHANG Hao, Jason GU. A Hybrid Method of Joint Entropy and Multiple Clustering Based DDoS Detection in SDN[J]. Netinfo Security, 2023, 23(10): 1-7.
[1] | KOPONEN T, CASADO M, GUDE N, et al. Distributed Control Platform for Large-Scale Production Networks: USA, 8. 830. 823[P]. 2014-09-09. |
[2] |
KAUR S, KUMAR K, AGGARWAL N, et al. A Comprehensive Survey of DDoS Defense Solutions in SDN: Taxonomy, Research Challenges, and Future Directions[J]. Computers & Security, 2021, 110(1): 102423-102431.
doi: 10.1016/j.cose.2021.102423 URL |
[3] |
SINGH J, BEHAL S. Detection and Mitigation of DDoS Attacks in SDN: A Comprehensive Review, Research Challenges and Future Directions[J]. Computer Science Review, 2020, 37: 100279-100294.
doi: 10.1016/j.cosrev.2020.100279 URL |
[4] |
JASIM M N, GAATA M T. K-Means Clustering-Based Semi-Supervised for DDoS Attacks Classification[J]. Bulletin of Electrical Engineering and Informatics, 2022, 11(6): 3570-3576.
doi: 10.11591/eei.v11i6 URL |
[5] |
KALKAN K, ALTAY L, GUR G, et al. JESS: Joint Entropy-Based DDoS Defense Scheme in SDN[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2358-2372.
doi: 10.1109/JSAC.2018.2869997 URL |
[6] |
MAHESHWARI A, MEHRAJ B, KHAN M S, et al. An Optimized Weighted Voting Based Ensemble Model for DDoS Attack Detection and Mitigation in SDN Environment[J]. Microprocessors and Microsystems, 2022, 89: 104412-104438.
doi: 10.1016/j.micpro.2021.104412 URL |
[7] | YU Junqing, LI Zizun, WU Chi, et al. A Two-Stage DDoS Attack Detection and Defense Method in Software Defined Network[J]. Netinfo Security, 2022, 22(1): 1-8. |
于俊清, 李自尊, 吴驰, 等. 面向软件定义网络的两级DDoS攻击检测与防御[J]. 信息网络安全, 2022, 22(1): 1-8. | |
[8] |
VILLA-PÉREZ M E, ALVAREZ-CARMONA M A, LOYOLA-GONZALEZ O, et al. Semi-Supervised Anomaly Detection Algorithms: A Comparative Summary and Future Research Directions[J]. Knowledge-Based Systems, 2021, 218: 106878-100686.
doi: 10.1016/j.knosys.2021.106878 URL |
[9] |
TAN Liang, PAN Yue, WU Jing, et al. A New Framework for DDoS Attack Detection and Defense in SDN Environment[J]. IEEE Access, 2020, 8: 161908-161919.
doi: 10.1109/Access.6287639 URL |
[10] | WANG Cong, CUI Yunhe, GAO Hongfeng. DDoS Attack Detection Based on Improved D-S Theory in SDN[J]. Computer System & Applications, 2022, 31(8): 354-360. |
王聪, 崔允贺, 高鸿峰. SDN环境下基于改进D-S理论的DDoS攻击检测[J]. 计算机系统应用, 2022, 31(8): 354-360. | |
[11] |
SABIROV D S, SHEPELEVICH I S. Information Entropy in Chemistry: An Overview[J]. Entropy, 2021, 23(10): 1240-1249.
doi: 10.3390/e23101240 URL |
[12] |
ZHANG Long, WANG Jinsong. A Hybrid Method of Entropy and SSAE-SVM Based DDoS Detection and Mitigation Mechanism in SDN[J]. Computers & Security, 2022, 115: 102604-102620.
doi: 10.1016/j.cose.2022.102604 URL |
[13] |
SINAGA K P, YANG M S. Unsupervised K-Means Clustering Algorithm[J]. IEEE Access, 2020, 8: 80716-80727.
doi: 10.1109/Access.6287639 URL |
[14] |
RAHMAN A, VERMA B. Novel Layered Clustering-Based Approach for Generating Ensemble of Classifiers[J]. IEEE Transactions on Neural Networks, 2011, 22(5): 781-792.
doi: 10.1109/TNN.2011.2118765 pmid: 21486714 |
[15] | QUINLAN J R. Induction of Decision Trees[J]. Machine Learning, 1986, 1: 81-106. |
[16] |
ZHOU Zhihua, LI Ming. Tri-Training: Exploiting Unlabeled Data Using Three Classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541.
doi: 10.1109/TKDE.2005.186 URL |
[17] |
AHUJA N, SINGAL G, MUKHOPADHYAY D, et al. Automated DDOS Attack Detection in Software DefIned Networking[J]. Journal of Network and Computer Applications, 2021, 187: 103108-102122.
doi: 10.1016/j.jnca.2021.103108 URL |
[18] | NING Xin, WANG Xinran, XU Shaohui, et al. A Review of Research on Co-Training[J]. Concurrency and Computation: Practice and Experience, 2021, 35(18): 1-16. |
[19] |
Al-JARRAH O Y, Al-HAMMDI Y, YOO P D, et al. Semi-Supervised Multi-Layered Clustering Model for Intrusion Detection[J]. Digital Communications and Networks, 2018, 4(4): 277-286.
doi: 10.1016/j.dcan.2017.09.009 URL |
[1] | 林义钧, 吴渝, 李红波. 基于Affinity Propagation算法的半监督微博水军识别[J]. 信息网络安全, 2022, 22(3): 85-96. |
[2] | 于俊清, 李自尊, 吴驰, 赵贻竹. 面向软件定义网络的两级DDoS攻击检测与防御[J]. 信息网络安全, 2022, 22(1): 1-8. |
[3] | 范广宇, 王兴伟, 贾杰, 黄敏. SDN应用平面与控制平面安全交互方法[J]. 信息网络安全, 2021, 21(6): 70-79. |
[4] | 李朝阳, 谭晶磊, 胡瑞钦, 张红旗. 基于双重地址跳变的移动目标防御方法[J]. 信息网络安全, 2021, 21(2): 24-33. |
[5] | 王鹃, 杨泓远, 樊成阳. 一种基于多阶段攻击响应的SDN动态蜜罐[J]. 信息网络安全, 2021, 21(1): 27-40. |
[6] | 冉金鹏, 王翔, 赵尚弘, 高航航. 基于果蝇优化的虚拟SDN网络映射算法[J]. 信息网络安全, 2020, 20(6): 65-74. |
[7] | 王健, 王语杰, 韩磊. 基于突变模型的SDN环境中DDoS攻击检测方法[J]. 信息网络安全, 2020, 20(5): 11-20. |
[8] | 周亚球, 任勇毛, 李琢, 周旭. 基于SDN的科学DMZ研究与实现[J]. 信息网络安全, 2019, 19(9): 134-138. |
[9] | 赖成喆, 王文娟. 面向车队的安全且具备隐私保护的移动性管理框架[J]. 信息网络安全, 2018, 18(7): 36-46. |
[10] | 石悦, 李相龙, 戴方芳. 一种基于属性基加密的增强型软件定义网络安全框架[J]. 信息网络安全, 2018, 18(1): 15-22. |
[11] | 李剑锋, 刘渊, 张浩, 王晓锋. 面向IaaS云平台的路由转发优化研究与实现[J]. 信息网络安全, 2017, 17(9): 10-15. |
[12] | 徐洋, 陈燚, 何锐, 谢晓尧. SDN中DDoS检测及多层防御方法研究[J]. 信息网络安全, 2017, 17(12): 22-28. |
[13] | 齐宇. SDN安全研究[J]. 信息网络安全, 2016, 16(9): 69-72. |
[14] | 陈颖聪, 陈广清, 陈智明, 万能. 面向智能电网SDN的二进制代码分析漏洞扫描方法研究[J]. 信息网络安全, 2016, 16(7): 35-39. |
[15] | 蒋宽, 杨鹏. 基于数据包回溯的软件定义网络中的故障排除[J]. 信息网络安全, 2016, 16(3): 71-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||