信息网络安全 ›› 2023, Vol. 23 ›› Issue (7): 64-73.doi: 10.3969/j.issn.1671-1122.2023.07.007

• 技术研究 • 上一篇    下一篇

基于AdaN自适应梯度优化的图像对抗迁移攻击方法

李晨蔚1, 张恒巍1(), 高伟2, 杨博1   

  1. 1.解放军信息工程大学密码工程学院,郑州 450001
    2.北京地铁科技发展有限公司,北京 100160
  • 收稿日期:2023-02-10 出版日期:2023-07-10 发布日期:2023-07-14
  • 通讯作者: 张恒巍 zhw11qd@126.com
  • 作者简介:李晨蔚(1992—),男,湖北,硕士研究生,主要研究方向为计算机视觉安全|张恒巍(1978—),男,河南,副教授,博士,主要研究方向为网络安全博弈、人工智能对抗攻击与防御|高伟(1978—),男,河南,工程师,硕士,主要研究方向为人工智能应用|杨博(1993—),男,湖北,博士研究生,主要研究方向为人工智能安全
  • 基金资助:
    国家重点研发计划(2017YFB0801904)

Transferable Image Adversarial Attack Method with AdaN Adaptive Gradient Optimizer

LI Chenwei1, ZHANG Hengwei1(), GAO Wei2, YANG Bo1   

  1. 1. Department of Cryptogram Engineering, PLA Information Engineering University, Zhengzhou 450001, China
    2. Beijing Subway Science and Technology Development Co., Ltd., Beijing 100160, China
  • Received:2023-02-10 Online:2023-07-10 Published:2023-07-14

摘要:

大部分网络模型在面临对抗攻击时表现不佳,这给网络算法的安全性带来了严重威胁。因此,对抗攻击已成为评估网络模型安全性的有效方式之一。现有的白盒攻击方法已经能够取得较高的攻击成功率,但是在黑盒攻击条件下,攻击成功率还有待提升。文章以梯度优化为出发点,将自适应梯度优化算法AdaN引入对抗样本生成过程中,以加速收敛,使梯度更新方向更稳定,从而增强对抗攻击的迁移性。为了进一步增强攻击效果,将文章所提方法与其他数据增强方法进行结合,从而形成攻击成功率更高的攻击方法。此外,还通过集成多个已知模型生成对抗样本,以便对已进行对抗训练的网络模型进行更有效的黑盒攻击。实验结果表明,采用AdaN梯度优化的对抗样本在黑盒攻击成功率上高于当前的基准方法,并具有更好的迁移性。

关键词: 神经网络, 图像分类, 对抗样本, 黑盒攻击, 迁移性

Abstract:

Most network models are vulnerable to adversarial attack, which poses a serious threat to the security of network algorithms. Therefore, adversarial attack becomes an effective method to evaluate network security and robustness. The existing white-box attack methods have been able to achieve high success rates, but black-box condition remains to be improved. This paper referred to gradient optimization and introduced AdaN optimizer to the process of generating adversarial examples. The main purpose was to accelerate gradient convergence. Thus, the overfitting was relieved and transferability was enhanced. In order to further enhance the attack effectiveness, the method proposed in the article is combined with other data augmentation methods to form a more effective attack method. Besides, generating adversarial examples by ensemble models shows better performance on defense models. The experimental results show that the adversarial samples optimized using AdaN gradient can achieve higher success rates in black-box attacks than the current benchmark method and have better transferability.

Key words: neural network, image classification, adversarial examples, black-box attack, transferability

中图分类号: