信息网络安全 ›› 2022, Vol. 22 ›› Issue (12): 57-66.doi: 10.3969/j.issn.1671-1122.2022.12.007
收稿日期:
2022-10-09
出版日期:
2022-12-10
发布日期:
2022-12-30
通讯作者:
银鹰
E-mail:yyin@sjtu.edu.cn
作者简介:
银鹰(1977—),女,湖南,助理研究员,硕士,主要研究方向为网络安全检测与风险评估、密码应用安全和车联网安全|周志洪(1979—),男,江西,讲师,博士,主要研究方向为网络安全检测与风险评估、密码应用安全和车联网安全|姚立红(1974—),女,江苏,高级工程师,博士,主要研究方向为操作系统与移动端安全、车联网安全
基金资助:
YIN Ying1,2(), ZHOU Zhihong1,2, YAO Lihong3
Received:
2022-10-09
Online:
2022-12-10
Published:
2022-12-30
Contact:
YIN Ying
E-mail:yyin@sjtu.edu.cn
摘要:
车载控制器局域网(Controller Area Network,CAN)连接着智能网联汽车系统的核心电子控制单元,对于保证汽车系统的安全性至关重要。由于其缺乏足够的信息安全措施,容易遭受拒绝服务(Denial of Service,DoS)攻击、重放攻击、模糊攻击等,给汽车系统及驾乘人员带来严重安全威胁。文章通过分析车载CAN面临的信息安全威胁,提取CAN报文在报文ID、时间间隔、数据字段中的通信特征,提出一种基于长短期记忆(Long Short Term Memory,LSTM)的CAN入侵检测模型,该模型能有效保留CAN报文的时序特征,在CAN遭受攻击时检测攻击行为以及对应的攻击类型。实验结果表明,该模型的攻击检测精度达99.99%。
中图分类号:
银鹰, 周志洪, 姚立红. 基于LSTM的CAN入侵检测模型研究[J]. 信息网络安全, 2022, 22(12): 57-66.
YIN Ying, ZHOU Zhihong, YAO Lihong. Research on LSTM-Based CAN Intrusion Detection Model[J]. Netinfo Security, 2022, 22(12): 57-66.
[1] | Upstream. Upstream’s 2022 Global Automotive Cybersecurity Report[EB/OL]. (2022-01-26) [2022-09-08]. https://upstream.auto/2022report/. |
[2] | XIA Ziyan, ZHOU Zhitong, LI Xiang, et al. Feasibility Study on Automobile Electronic Control System of ECU Intrusion and Virus[J]. Netinfo Security, 2014, 14(9): 193-195. |
夏子焱, 周之童, 李响, 等. 汽车ECU电控系统入侵与汽车病毒编写的可行性研究[J]. 信息网络安全, 2014, 14(9):193-195. | |
[3] | FENG Cong. Research on the Governance and Law Enforcement of Network Security of Intelligent Connected Vehicles[J]. Netinfo Security, 2020(S1):44-47. |
冯聪. 智能网联汽车网络安全问题的治理与执法探索[J]. 信息网络安全, 2020(S1):44-47. | |
[4] | Security Guest. 360 Network Attack and Defense Lab Has Revealed a Second High Risk Vulnerability in a Tesla Vehicle-The Ability to Open the Vehicle Without a Key[EB/OL]. (2015-01-21) [2022-09-08]. https://anyun.org/a/yejiezixun/2015/0129/4460.html. |
安全客. 360网络攻防实验室公布第二例特斯拉高危漏洞—无需钥匙开启车辆[EB/OL].(2015-01-21) [2022-09-08]. https://anyun.org/a/yejiezixun/2015/0129/4460.html. | |
[5] | Tencent Technology. Tencent Cohen Lab Successfully Invaded Tesla Remotely for the First Time in the World[EB/OL]. (2016-09-20) [2022-09-08]. https://news.mydrivers.com/1/500/500287.htm. |
腾讯科技. 腾讯科恩实验室成功远程入侵特斯拉为全球首次[EB/OL].(2016-09-20) [2022-09-08]. https://news.mydrivers.com/1/500/500287.htm. | |
[6] | LI Yilin, YAN Zheng, XIE Haomeng. Survey of Privacy Preservation in VANET[J]. Netinfo Security, 2019, 19(4): 63-72. |
李怡霖, 闫峥, 谢皓萌. 车载自组织网络的隐私保护综述[J]. 信息网络安全, 2019, 19(4):63-72. | |
[7] |
CHOI W, JO H J, WOO S, et al. Identifying ECUs Using Inimitable Characteristics of Signals in Controller Area Networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4757-4770.
doi: 10.1109/TVT.2018.2810232 URL |
[8] | NILSSON D K, LARSON U E, JONSSON E. Efficient in-Vehicle Delayed Data Authentication Based on Compound Message Authentication Codes[C]// IEEE. 2008 IEEE 68th Vehicular Technology Conference. New York: IEEE, 2008: 1-5. |
[9] | HAZEM A, FAHMY H A. LCAP-a Lightweight Can Authentication Protocol for Securing in-Vehicle Networks[EB/OL]. (2012-06-20) [2022-09-08]. http://www.eece.cu.edu.eg/-hfahmy/publish/escar2012.pdf. |
[10] | GMIDEN M, GMIDEN M H, TRABELSI H. An Intrusion Detection Method for Securing in-Vehicle CAN Bus[C]// IEEE. 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). New York: IEEE, 2016: 176-180. |
[11] | MARCHETTI M, STABILI D. Anomaly Detection of CAN Bus Messages through Analysis of ID Sequences[C]// IEEE. 2017 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2017: 1577-1583. |
[12] | MÜTER M, ASAJ N. Entropy-Based Anomaly Detection for in-Vehicle Networks[C]// IEEE. 2011 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2011: 1110-1115. |
[13] | STABILI D, MARCHETTI M, COLAJANNI M. Detecting Attacks to Internal Vehicle Networks through Hamming Distance[C]// IEEE. 2017 AEIT International Annual Conference. New York: IEEE, 2017: 1-6. |
[14] | CHO K T, SHIN K G. Fingerprinting Electronic Control Units for Vehicle Intrusion Detection[C]// USENIX. 25th USENIX Security Symposium (USENIX Security 16). Berkeley:USENIX, 2016: 911-927. |
[15] | SEO E, SONG H M, KIM H K. Gids: GAN Based Intrusion Detection System for in-Vehicle Network[C]// IEEE. 2018 16th Annual Conference on Privacy, Security and Trust (PST). New York: IEEE, 2018: 1-6. |
[16] |
ZHU Konglin, CHEN Zhicheng, PENG Yuyang, et al. Mobile Edge Assisted Literal Multi-Dimensional Anomaly Detection of in-Vehicle Network Using LSTM[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4275-4284.
doi: 10.1109/TVT.2019.2907269 URL |
[17] | GAZDAG A, NEUBRANDT D, BUTTYÁN L, et al. Detection of Injection Attacks in Compressed CAN Traffic Logs[C]// Springer. 2018 Security and Safety Interplay of Intelligent Software Systems. New York: Springer, 2018: 111-124. |
[18] | KANG M J, KANG J W. Intrusion Detection System Using Deep Neural Network for in-Vehicle Network Security[EB/OL]. (2016-06-07) [2022-09-08]. https://pubmed.ncbi.nlm.nih.gov/27271802/. |
[19] | MO Xiuliang, CHEN Pengyuan, WANG Jianing, et al. Anomaly Detection of Vehicle CAN Network Based on Message Content[C]// Springer. International Conference on Security and Privacy in New Computing Environments. New York: Springer, 2019: 96-104. |
[20] | SONG H M, WOO J, KIM H K. In-Vehicle Network Intrusion Detection Using Deep Convolutional Neural Network[EB/OL]. (2019-10-03) [2022-09-08]. https://www.sciencedirect.com/science/article/abs/pii/S2214209619302451. |
[21] |
HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
pmid: 9377276 |
[22] | MALHOTRA P, VIG L, SHROFF G, et al. Long Short Term Memory Networks for Anomaly Detection in Time Series[EB/OL]. (2015-04-22) [2022-09-08]. https://www.researchgate.net/publication/304782562_Long_Short_Term_Memory_Networks_for_Anomaly_Detection_in_Time_Series. |
[23] | MARKOVITZ M, WOOL A. Field Classification, Modeling and Anomaly Detection in Unknown CAN Bus Networks[J]. Vehicular Communications, 2017(9): 43-52. |
[24] | LIU Xin, WANG Jiayin, YANG Haorui, et al. An Internet of Vehicles Authentication Protocol Based on Blockchain and SecGear Framework[J]. Netinfo Security, 2022, 22(1): 27-36. |
刘忻, 王家寅, 杨浩睿, 等. 一种基于区块链和SecGear框架的车联网认证协议[J]. 信息网络安全, 2022, 22(1):27-36. | |
[25] | HCRL. Car Hacking for Intrusion Detection[EB/OL]. (2018-08-01) [2022-09-08]. https://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset. |
[1] | 张光华, 刘永升, 王鹤, 于乃文. 基于BiLSTM和注意力机制的智能合约漏洞检测方案[J]. 信息网络安全, 2022, 22(9): 46-54. |
[2] | 张兴兰, 付娟娟. 基于辅助熵减的神经常微分方程入侵检测模型[J]. 信息网络安全, 2022, 22(6): 1-8. |
[3] | 王浩洋, 李伟, 彭思维, 秦元庆. 一种基于集成学习的列车控制系统入侵检测方法[J]. 信息网络安全, 2022, 22(5): 46-53. |
[4] | 沈卓炜, 范琳丽, 华童, 王科翔. 异常权限配置下的角色挖掘方案[J]. 信息网络安全, 2022, 22(11): 7-16. |
[5] | 白宏鹏, 邓东旭, 许光全, 周德祥. 基于联邦学习的入侵检测机制研究[J]. 信息网络安全, 2022, 22(1): 46-54. |
[6] | 何红艳, 黄国言, 张炳, 贾大苗. 基于极限树特征递归消除和LightGBM的异常检测模型[J]. 信息网络安全, 2022, 22(1): 64-71. |
[7] | 刘烁, 张兴兰. 基于双重注意力的入侵检测系统[J]. 信息网络安全, 2022, 22(1): 80-86. |
[8] | 李群, 董佳涵, 关志涛, 王超. 一种基于聚类分类的物联网恶意攻击检测方法[J]. 信息网络安全, 2021, 21(8): 82-90. |
[9] | 任涛, 金若辰, 罗咏梅. 融合区块链与联邦学习的网络入侵检测算法[J]. 信息网络安全, 2021, 21(7): 27-34. |
[10] | 杜晔, 王子萌, 黎妹红. 基于优化核极限学习机的工控入侵检测方法[J]. 信息网络安全, 2021, 21(2): 1-9. |
[11] | 王华忠, 程奇. 基于改进鲸鱼算法的工控系统入侵检测研究[J]. 信息网络安全, 2021, 21(2): 53-60. |
[12] | 沈也明, 李贝贝, 刘晓洁, 欧阳远凯. 基于主动学习的工业互联网入侵检测研究[J]. 信息网络安全, 2021, 21(1): 80-87. |
[13] | 李桥, 龙春, 魏金侠, 赵静. 一种基于LMDR和CNN的混合入侵检测模型[J]. 信息网络安全, 2020, 20(9): 117-121. |
[14] | 徐国天. 网络入侵检测中K近邻高速匹配算法研究[J]. 信息网络安全, 2020, 20(8): 71-80. |
[15] | 姜楠, 崔耀辉, 王健, 吴晋超. 基于上下文特征的IDS告警日志攻击场景重建方法[J]. 信息网络安全, 2020, 20(7): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||