信息网络安全 ›› 2022, Vol. 22 ›› Issue (8): 55-63.doi: 10.3969/j.issn.1671-1122.2022.08.007

• 技术研究 • 上一篇    下一篇

基于CNN-MGU的侧信道攻击研究

高博1,2(), 陈琳1, 严迎建1   

  1. 1.信息工程大学,郑州 450001
    2.中国人民解放军92957部队,舟山 316000
  • 收稿日期:2022-03-18 出版日期:2022-08-10 发布日期:2022-09-15
  • 通讯作者: 高博 E-mail:xxgcdxgaobo@126.com
  • 作者简介:高博(1990—),男,河南,硕士研究生,主要研究方向为安全专用芯片设计、侧信道攻击。|陈琳(1975—),女,河南,副教授,博士,主要研究方向为安全专用芯片设计|严迎建(1973—),男,河南,教授,博士,主要研究方向为安全专用芯片设计
  • 基金资助:
    国家自然科学基金(61832018)

Research on Side Channel Attack Based on CNN-MGU

GAO Bo1,2(), CHEN Lin1, YAN Yingjian1   

  1. 1. Information Engineering University, Zhengzhou 450001, China
    2. 92957 Troops of PLA, Zhoushan 316000, China
  • Received:2022-03-18 Online:2022-08-10 Published:2022-09-15
  • Contact: GAO Bo E-mail:xxgcdxgaobo@126.com

摘要:

基于深度学习的侧信道攻击对密码算法的安全性具有严重威胁,是学术界研究的热点之一。目前神经网络模型存在准确率低、鲁棒性差、收敛速度慢等问题,针对这些问题,文章结合卷积神经网络(Convolutional Neural Network,CNN)和最小门控单元(Minimal Gated Unit,MGU),提出基于CNN-MGU的神经网络模型。该模型首先通过CNN层提取轨迹上的局部关键信息,然后利用MGU层充分学习局部关键信息在时间上的相互依赖关系恢复密钥,最后在完全同步与非同步的轨迹上对模型的性能进行验证。实验结果表明,与基于CNN、长短期记忆(Long Short-Term Memory,LSTM)网络的攻击方法相比,基于CNN-MGU模型的训练准确率分别提高了约5.6%、3.4%。当数据集中加入的抖动量从0增大至50、100时,基于CNN-MGU的神经网络模型的准确率仍达90%,鲁棒性强、收敛速度快。

关键词: 侧信道攻击, 深度学习, CNN, MGU

Abstract:

Side-channel attacks based on deep learning pose a serious threat to the security of cryptographic algorithms and become a research hotspot. At present, some network models have problems such as low accuracy, poor robustness, and slow convergence. Aimed at these problems, this paper proposed a neural network model based on CNN-MGU by combining the advantages of convolutional neural network (CNN) and minimal gated unit (MGU). Firstly, the key information was effectively extracted by the CNN layer. Secondly, the timing dependency was fully learned by the MGU layer, and the key was recovered by dividing and conquering. Thirdly, the performance of the model was verified on fully synchronization and asynchronous traces. The experimental results show that compared with attack based on CNN and long short-term memory(LSTM) network, the accuracy of method based on CNN-MGU is improved by about 5.6% and 3.4% respectively. When the amount of jitter added in the data set increases from 0 to 50 and 100 respectively, the accuracy of the CNN-MGU is still 90% accuracy, which has strong robustness and fast convergence speed.

Key words: side channel attack, deep learning, CNN, MGU

中图分类号: