信息网络安全 ›› 2022, Vol. 22 ›› Issue (8): 55-63.doi: 10.3969/j.issn.1671-1122.2022.08.007
收稿日期:
2022-03-18
出版日期:
2022-08-10
发布日期:
2022-09-15
通讯作者:
高博
E-mail:xxgcdxgaobo@126.com
作者简介:
高博(1990—),男,河南,硕士研究生,主要研究方向为安全专用芯片设计、侧信道攻击。|陈琳(1975—),女,河南,副教授,博士,主要研究方向为安全专用芯片设计|严迎建(1973—),男,河南,教授,博士,主要研究方向为安全专用芯片设计
基金资助:
GAO Bo1,2(), CHEN Lin1, YAN Yingjian1
Received:
2022-03-18
Online:
2022-08-10
Published:
2022-09-15
Contact:
GAO Bo
E-mail:xxgcdxgaobo@126.com
摘要:
基于深度学习的侧信道攻击对密码算法的安全性具有严重威胁,是学术界研究的热点之一。目前神经网络模型存在准确率低、鲁棒性差、收敛速度慢等问题,针对这些问题,文章结合卷积神经网络(Convolutional Neural Network,CNN)和最小门控单元(Minimal Gated Unit,MGU),提出基于CNN-MGU的神经网络模型。该模型首先通过CNN层提取轨迹上的局部关键信息,然后利用MGU层充分学习局部关键信息在时间上的相互依赖关系恢复密钥,最后在完全同步与非同步的轨迹上对模型的性能进行验证。实验结果表明,与基于CNN、长短期记忆(Long Short-Term Memory,LSTM)网络的攻击方法相比,基于CNN-MGU模型的训练准确率分别提高了约5.6%、3.4%。当数据集中加入的抖动量从0增大至50、100时,基于CNN-MGU的神经网络模型的准确率仍达90%,鲁棒性强、收敛速度快。
中图分类号:
高博, 陈琳, 严迎建. 基于CNN-MGU的侧信道攻击研究[J]. 信息网络安全, 2022, 22(8): 55-63.
GAO Bo, CHEN Lin, YAN Yingjian. Research on Side Channel Attack Based on CNN-MGU[J]. Netinfo Security, 2022, 22(8): 55-63.
[1] | KOCHER P, JAFFE J, JUN B. Differential Power Analysis[C]//Springer. Annual International Cryptology Conference. Heidelberg: Springer, 1999: 388-397. |
[2] | KOCHER P C. Timing Attacks on Implementations of Diffie-Hellman, RSA, DES, and other Systems[C]//Springer. 16th Annual International Cryptology Conference. Heidelberg: Springer, 1996: 104-113. |
[3] | MARTINASEK Z, ZEMAN V. Innovative Method of the Power Analysis[J]. Radio Engineering, 2013, 22(2): 586-594. |
[4] | MAGHREBI H, PORTIGLIATTI T, PROUFF E. Breaking Cryptographic Implementations Using Deep Learning Techniques in Security, Privacy, and Applied Cryptography Engineering [C]//Springer. Security, Privacy, and Applied Cryptography Engineering (SPACE 2016). Heidelberg: Springer, 2016: 3-26. |
[5] | CAGLI E, DUMAS C, PROUFF E. Convolutional Neural Networks with Data Augmentation against Jitter-Based Countermeasures[C]//Springer. 19th International Conference (CHES 2017), Heidelberg: Springer, 2017: 45-68. |
[6] |
SAMIOTIS I P. Side-Channel Attacks Using Convolutional Neural Networks: A Study on the Performance of Convolutional Neural Networks on Side-Channel Data[J]. Frontiers in Artificial Intelligence, 2018, 3(1): 73-88.
doi: 10.3389/frai.2020.00073 URL |
[7] |
WANG Kai, YAN Yingjian, GUO Pengfei, et al. Research on Power Analysis Attack Based on Improved Residual Network and Data Augmentation Technology[J]. Journal of Cryptologic Research, 2020, 7(4): 551-564.
doi: 10.13868/j.cnki.jcr.000389 |
王恺, 严迎建, 郭朋飞, 等. 基于改进残差网络和数据增强技术的能量分析攻击研究[J]. 密码学报, 2020, 7(4): 551-564.
doi: 10.13868/j.cnki.jcr.000389 |
|
[8] | CHEN Ping, WANG Ping, DONG Gaofeng, et al. SincNet-Based Side Channel Attack[J]. Journal of Cryptography, 2020, 7(5): 583-594. |
陈平, 汪平, 董高峰, 等. 基于SincNet的侧信道攻击[J]. 密码学报, 2020, 7(5): 583-594.
doi: 10.13868/j.cnki.jcr.000391 |
|
[9] | WANG Junnian, ZHU Bin, YU Wenxin, et al. Side Channel Analysis Based on Deep Learning LSTM[J]. Journal of Computer Engineering, 2021, 47(10): 140-146. |
王俊年, 朱斌, 于文新, 等. 基于深度学习LSTM的侧信道分析[J]. 计算机工程, 2021, 47(10): 140-146. | |
[10] | WANG Ping, ZHENG Mengce, NAN Jiehui, et al. A Novel Method for Profiling Side Channel Attacks against Imbalanced Data[J]. Journal of Cryptologic Research, 2021, 8(4): 549-559. |
汪平, 郑梦策, 南杰慧, 等. 一种针对侧信道建模攻击中数据不平衡的新方法[J]. 密码学报, 2021, 8(4): 549-559. | |
[11] | DUAN Xiaoyi, LI You, LINGHU Yunxing, et al. Research on the Method of Side Channel Attack Based on RF Algorithm[J]. Netinfo Security, 2022, 22(1): 19-26. |
段晓毅, 李邮, 令狐韫行, 等. 基于RF算法的侧信道攻击方法研究[J]. 信息网络安全, 2022, 22(1): 19-26. | |
[12] | CAO Jiahua, WU Zhen, WANG Yi, et al. Side Channel Attack of S-Box Power Randomization Based on CNN-BPR[J]. Journal of Chengdu University of Information Technology, 2022, 37(1): 16-20. |
曹家华, 吴震, 王燚, 等. 基于CNN-BPR的S-Box功耗随机化侧信道攻击[J]. 成都信息工程大学学报, 2022, 37(1): 16-20. | |
[13] | ZHANG Guanghua, YAN Fengru, ZHANG Dongwen, et al. Insider Threat Detection Model Based on LSTM-Attention[J]. Netinfo Security, 2022, 22(2): 1-10. |
张光华, 闫风如, 张冬雯, 等. 基于LSTM-Attention的内部威胁检测模型[J]. 信息网络安全, 2022, 22(2): 1-10. | |
[14] | XU Guotian, SHENG Zhenwei. DGA Malicious Domain Name Detection Method Based on Fusion of CNN and LSTM[J]. Netinfo Security, 2021, 21(10): 41-47. |
徐国天, 盛振威. 基于融合CNN与LSTM的DGA恶意域名检测方法[J]. 信息网络安全, 2021, 21(10): 41-47. | |
[15] | ZHOU Guobing, WU Jianxin, ZHANG Chenlin, et al. Minimal Gated Unit for Recurrent Neural Networks[J]. International Journal of Automation & Computing, 2016(13): 226-234. |
[16] | STANDAERT F X, MALKIN T G, YUNG M. A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks[C]//Springer. 28th Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 2009), Heidelberg: Springer, 2009: 443-461. |
[17] | BENADJILA R, PROUFF E, STRULLU R, et al. Deep Learning for Side-Channel Analysis and Introduction to ASCAD Database[J]. Journal of Cryptographic Engineering, 2020(10): 163-188. |
[18] | WANG Huanyu, BRISFORS M, FORSMARK S, et al. How Diversity Affects Deep-Learning Side-Channel Attacks[C]//IEEE. 2019 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC). New York: IEEE, 2019:1-16. |
[1] | 洪晟, 李雷, 原义栋, 高欣妍. 处理器微架构存储体系侧信道协同安全技术研究[J]. 信息网络安全, 2022, 22(6): 26-37. |
[2] | 郑耀昊, 王利明, 杨婧. 基于网络结构自动搜索的对抗样本防御方法研究[J]. 信息网络安全, 2022, 23(3): 70-77. |
[3] | 段晓毅, 李邮, 令狐韫行, 胡荣磊. 基于RF算法的侧信道攻击方法研究[J]. 信息网络安全, 2022, 22(1): 19-26. |
[4] | 刘烁, 张兴兰. 基于双重注意力的入侵检测系统[J]. 信息网络安全, 2022, 22(1): 80-86. |
[5] | 朱新同, 唐云祁, 耿鹏志. 基于特征融合的篡改与深度伪造图像检测算法[J]. 信息网络安全, 2021, 21(8): 70-81. |
[6] | 路宏琳, 王利明. 面向用户的支持用户掉线的联邦学习数据隐私保护方法[J]. 信息网络安全, 2021, 21(3): 64-71. |
[7] | 马瑞, 蔡满春, 彭舒凡. 一种基于改进的Xception网络的深度伪造视频检测模型[J]. 信息网络安全, 2021, 21(12): 109-117. |
[8] | 潘孝勤, 杜彦辉. 基于混合特征和多通道GRU的伪造语音鉴别方法[J]. 信息网络安全, 2021, 21(10): 1-7. |
[9] | 徐国天, 盛振威. 基于融合CNN与LSTM的DGA恶意域名检测方法[J]. 信息网络安全, 2021, 21(10): 41-47. |
[10] | 李桥, 龙春, 魏金侠, 赵静. 一种基于LMDR和CNN的混合入侵检测模型[J]. 信息网络安全, 2020, 20(9): 117-121. |
[11] | 吴警, 芦天亮, 杜彦辉. 基于Char-RNN改进模型的恶意域名训练数据生成技术[J]. 信息网络安全, 2020, 20(9): 6-11. |
[12] | 王文华, 郝新, 刘焱, 王洋. AI系统的安全测评和防御加固方案[J]. 信息网络安全, 2020, 20(9): 87-91. |
[13] | 张蕾华, 黄进, 张涛, 王生玉. 视频侦查中人像智能分析应用及算法优化[J]. 信息网络安全, 2020, 20(5): 88-93. |
[14] | 王蓉, 马春光, 武朋. 基于联邦学习和卷积神经网络的入侵检测方法[J]. 信息网络安全, 2020, 20(4): 47-54. |
[15] | 毕新亮, 杨海滨, 杨晓元, 黄思远. 基于StarGAN的生成式图像隐写方案[J]. 信息网络安全, 2020, 20(12): 64-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||