信息网络安全 ›› 2020, Vol. 20 ›› Issue (4): 73-80.doi: 10.3969/j.issn.1671-1122.2020.04.009

• 技术研究 • 上一篇    下一篇

基于LightGBM的以太坊恶意账户检测方法

边玲玉1,2, 张琳琳1,2(), 赵楷1,2, 石飞1,2   

  1. 1.新疆大学信息科学与工程学院,乌鲁木齐 830046
    2.新疆大学网络空间安全学院,乌鲁木齐 830046
  • 收稿日期:2020-01-03 出版日期:2020-04-10 发布日期:2020-05-11
  • 通讯作者: 张琳琳 E-mail:zllnadasha@xju.edu.cn
  • 作者简介:

    作者简介:边玲玉(1996—),女,新疆,硕士研究生,主要研究方向为区块链数据安全;张琳琳(1974—),女,河南,副教授,博士,主要研究方向为软件安全、大数据分析;赵楷(1976—),男,安徽,副教授,博士,主要研究方向为恶意代码检测、云计算安全;石飞(1983—),男,重庆,实验师,硕士,主要研究方向为智能仪器研究、图像处理。

  • 基金资助:
    国家自然科学基金[61867006];新疆维吾尔自治区科技厅创新环境建设专项[PT1811];新疆维吾尔自治区高校科研计划[XJEDU2017T002,XJEDU2017M005];新疆维吾尔自治区创新环境(人才、基地)建设专项(自然科学基金)联合基金[2019D01C062,2019D01C041];国家级大学生创新计划[201910755030]

Ethereum Malicious Account Detection Method Based on LightGBM

BIAN Lingyu1,2, ZHANG Linlin1,2(), ZHAO Kai1,2, SHI Fei1,2   

  1. 1. College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
    2. College of Cyber Science and Engineering, Xinjiang University, Urumqi 830046, China
  • Received:2020-01-03 Online:2020-04-10 Published:2020-05-11
  • Contact: Linlin ZHANG E-mail:zllnadasha@xju.edu.cn

摘要:

由于区块链匿名性的特点,以太坊逐渐成为恶意账户利用漏洞攻击、网络钓鱼等手段实施欺诈的平台。针对上述问题,文章提出了一种基于LightGBM的以太坊恶意账户检测方法。首先通过收集并标注8028个以太坊账户,基于交易历史规律提取手工特征;然后使用自动特征构造工具featuretools提取统计特征;最后通过融合的两类特征训练LightGBM分类器完成以太坊恶意账户检测。实验结果表明,文章提出方法的F1值为94.9%,相较于SVM、KNN等方法更加高效准确,引入手工特征有效提升了恶意账户的检测性能。

关键词: 区块链, 恶意账户检测, 以太坊, LightGBM

Abstract:

Due to the anonymity of the blockchain, Ethereum has gradually become a platform for malicious accounts to scam through vulnerabilities, phishing, and other methods. An Ethereum malicious account detection method based on LightGBM is proposed. By collecting and annotating 8028 Ethereum accounts, handcrafted features are extracted based on the history of transactions, and statistical features are extracted using featuretools. Finally, the LightGBM classifier is trained to detect malicious accounts in Ethereum through the fusion of two types of features. The experimental results show that the F1-Measure of the proposed method is 94.9%, which is more efficient and accurate than SVM, KNN and other methods. The introduction of handcrafted features can effectively improve the detection performance of malicious accounts.

Key words: blockchain, malicious account detection, Ethereum, LightGBM

中图分类号: