信息网络安全 ›› 2019, Vol. 19 ›› Issue (11): 71-81.doi: 10.3969/j.issn.1671-1122.2019.11.010
收稿日期:
2019-08-10
出版日期:
2019-11-10
发布日期:
2020-05-11
作者简介:
作者简介:吕宗平(1964—),男,湖北,研究员,硕士,主要研究方向为网络与信息安全、民航信息系统;丁磊(1995—),男,天津,硕士研究生,主要研究方向为工业控制系统网络与信息安全;隋翯(1987—),男,吉林,讲师,博士,主要研究方向为工业控制系统网络与信息安全;顾兆军(1966—),男,山东,教授,博士,主要研究方向为网络与信息安全、民航信息系统。
基金资助:
Zongping LV1, Lei DING1,2, He SUI1,3(), Zhaojun GU1,2
Received:
2019-08-10
Online:
2019-11-10
Published:
2020-05-11
摘要:
随着工业控制系统开放性增强,大量工业控制协议漏洞暴露在互联网上,造成了工业控制系统安全风险急剧上升。文章针对工业控制系统中最常用的Modbus协议,以典型灌装环节为例,提出了一种基于时间自动机的工业控制系统网络安全分析方法,并对针对Modbus协议的中间人攻击进行了形式化分析和验证。首先结合灌装生产业务流程,归纳了该控制系统网络结构、安全属性和面临的安全威胁;然后对该控制系统的状态、行为、安全策略和攻击行为进行时间自动机建模,并通过时钟同步将各模型连接成网络;最后利用UPPAAL工具编写安全属性公式,并对有无攻击两种情况下的安全属性进行验证。实验结果表明,针对Modbus协议的中间人攻击成功破坏了该控制系统的完整性和可用性。
中图分类号:
吕宗平, 丁磊, 隋翯, 顾兆军. 基于时间自动机的工业控制系统网络安全风险分析[J]. 信息网络安全, 2019, 19(11): 71-81.
Zongping LV, Lei DING, He SUI, Zhaojun GU. Network Security Risk Analysis of Industrial Control System Based on Time Automata[J]. Netinfo Security, 2019, 19(11): 71-81.
表3
时间自动机
名称 | 时间自动机模型 | 作用 |
---|---|---|
Client-Communication | 工程师站通信模型 | 描述工程师站与Modbus服务器交互通信的状态迁移 |
Client-Behavior | 工程师站行为模型 | 描述Modbus行为服务器状态迁移 |
Modbus_Server-Communication | Modbus服务器通信模型 | 描述Modbus服务器与上位机和下位机交互通信状态迁移 |
Modbus_Server- Behavior | Modbus服务器行为模型 | 描述Modbus服务器接收、下发指令行为状态迁移 |
OPC_Server-Communication | OPC服务器通信模型 | 描述OPC服务器与上位机和下位机交互通信状态迁移 |
OPC_Server- Behavior | OPC服务器行为模型 | 描述OPC服务器接收、下发指令行为状态迁移 |
Conveyor | 传送带模型 | 描述传送带工作状态迁移 |
Nozzle | 灌装喷嘴模型 | 描述灌装喷嘴工作状态迁移 |
Arm_One | 机械臂1模型 | 描述机械臂1工作状态迁移 |
Arm_Two | 机械臂2模型 | 描述机械臂2工作状态迁移 |
PositionSensor_One | 位置传感器1模型 | 描述位置传感器1状态迁移 |
PositionSensor_Two | 位置传感器2模型 | 描述位置传感器2状态迁移 |
Level | 液位监测器模型 | 描述液位检测器工作状态迁移 |
Security | 安全策略模型 | 描述系统安全状态迁移 |
Attack | 攻击模型 | 描述攻击行为状态迁移 |
表4
信号指令
指令 | 作用 |
---|---|
Begin_or_Stop | 打开/关闭Client-Behavior |
Modbus_CtoS/Modbus_StoC | Client-Communication与Modbus_Server-Communication交互通信 |
OPC_CtoS/OPC_StoC | Client-Communication与OPC_Server-Communication互相通信 |
Modbus_On/ Modbus_Off | 打开/关闭Modbus_Server- Behavior |
OPC_On/OPC_Off | 打开/关闭OPC_Server- Behavior |
Conveyor_On/Conveyor_Off | 打开/关闭Conveyor |
Nozzle_On/ Nozzle_Off | 打开/关闭Nozzle |
Arm_One_On/ Arm_One_Off | 打开/关闭机械臂1 |
Arm_Two_On/ Arm_Two_Off | 打开/关闭机械臂2 |
Sign | 数字签名 |
Check_Sign | 检查数字签名 |
Sign_Crypt | 数字签名加密 |
Decrypt | 解密 |
Signal_1 | 设备交互通信 |
Signal_2 | 设备交互通信 |
表5
状态含义
状态 | 含义 |
---|---|
idle | 起始状态 |
client_behavior_on_off | Client-Behavior开启/关闭状态 |
modbus_ctos | Client-Communication与Modbus_Server-Communication建立通信状态 |
modbus_stoc | Modbus_Server-Communication与Client-Communication建立通信状态 |
opc_ctos | Client-Communication与OPC_Server-Communication建立通信状态 |
opc_stoc | OPC_Server-Communication与Client-Communication建立通信状态 |
sign | 执行数字签名完毕状态 |
check_sign | 完成检查签名操作状态 |
check_false/ check_true | 签名错误/签名正确 |
on/ off | Client-Behavior开启/关闭状态 |
check_msg | 检查读/写操作状态 |
read/ write | 检查读/写操作完毕状态 |
modbus_server | Modbus_Server状态 |
nozzle | 罐装喷嘴状态 |
sensor_1 | 位置传感器1工作/未工作状态 |
sensor _2 | 位置传感器2工作/未工作状态 |
level | 液位监测器罐装完成/罐装未完成状态 |
conveyor | 传送带工作/未工作状态 |
arm_1 | 机械臂1状态 |
arm_2 | 机械臂2状态 |
modbus_server_on | Modbus服务器启动状态 |
modbus_server_off | Modbus服务器关闭状态 |
opc_run | OPC服务器状态 |
opc_server_on/opc_server_off | OPC服务开启/关闭器状态 |
decrypt | 解密完毕状态 |
sign_crypt | 数字签名加密完毕状态 |
out/in | 瓶子处于/未处于位置传感器状态 |
full/filling | 监测液体灌满/未灌满状态 |
Arm_stop/Arm_work | 机械臂工作/未作状态 |
conveyor_on/ conveyor_off | 传送带工作/未工作状态 |
arm_1_on/arm_1_off | 机械臂1工作/未工作状态 |
nozzle_on/nozzle_off | 罐装喷嘴工作/未工作状态 |
表10
验证结果
安全属性公式 | 验证时间 | 验证结果 |
---|---|---|
A[] not deadlock | 5.641 s | 满足该性质 |
A[] not (Level.full and Nozzle.nozzle_on) | 3.328 s | 满足该性质 |
A[] not (Nozzle.nozzle_on and Conveyor.conveyor_on) | 1.64 s | 满足该性质 |
A[] not (Nozzle.nozzle_on and Position_Sensor_One.out) | 1.641 s | 满足该性质 |
A[] not (Arm_One.arm_on and Position_Sensor_Two.out) | 1.656 s | 满足该性质 |
A[] not (Arm_Two.arm_on and Position_Sensor_One.out) | 1.782 s | 满足该性质 |
表11
攻击验证结果
安全属性公式 | 攻击方式 | 验证时间 | 验证结果 |
---|---|---|---|
A[] not deadlock | 拦截 | 0.047 s | 不满足该性质 |
A[] not (Level.full and Nozzle.nozzle_on) | 拦截、篡改、重放 | 1.656 s | 不满足该性质 |
A[] not (Nozzle.nozzle_on and Conveyor.conveyor_on) | 拦截、篡改、重放 | 0.813 s | 不满足该性质 |
A[] not (Nozzle.nozzle_on and Position_Sensor_One.out) | 拦截、篡改、重放 | 0.812 s | 不满足该性质 |
A[] not (Arm_One.arm_on and Position_Sensor_Two.out) | 拦截、解密、重放 | 内存耗尽 | |
A[] not (Arm_Two.arm_on and Position_Sensor_One.out) | 拦截、解密、重放 | 内存耗尽 |
[1] | PENG Yong, JIANG Changqing, XIE Feng, et al.Research Progress on Information Security of Industrial Control System[J]. Journal of Tsinghua University(Natural Science Edition), 2012, 52(10): 1396-1408. |
彭勇,江常青,谢丰,等.工业控制系统信息安全研究进展[J].清华大学学报:自然科学版,2012,52(10):1396-1408. | |
[2] | ERIC D K.Industrial Network Security: Securing Critical Infrastructure Networks for Smart Grid, SCADA, and Other Industrial Control Systems[M]. ZHOU Qin, GUO Bingyi, HE Huimin, et al. Beijing: National Defense Industry Press, 2014. |
Eric D K. 工业网络安全——智能电网,SCADA和其他工业控制系统等关键基础设施的安全[M].周秦,郭冰逸,贺惠民,等,译.北京:国防工业出版社,2014. | |
[3] | CHEMINOD M, DURANTE L, VALENZANO A.Review of Security Issues in Industrial Networks[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 277-293. |
[4] | YANG An, SUN Limin, WANG Xiaoshan, et al.Overview of Intrusion Detection Technologies for Industrial Control Systems[J]. Computer Research and Development, 2016, 53(9): 2039-2054. |
杨安,孙利民,王小山,等.工业控制系统入侵检测技术综述[J].计算机研究与发展,2016,53(9):2039-2054. | |
[5] | ZHOU Jian, CHEN Jie.Construction of Integration Evaluation Index System for Manufacturing Enterprises[J]. Computer Integrated Manufacturing System, 2013, 19(9): 2251-2263. |
周剑,陈杰.制造业企业两化融合评估指标体系构建[J].计算机集成制造系统,2013,19(9):2251-2263. | |
[6] | The State Council. Made in China 2025[EB/OL]. . |
国务院.中国制造2025[EB/OL]. . | |
[7] | LIANG Xiujing.TSMC Virus Event: Information Security of Manufacturing Industry is Urgent[J]. Automation Expo, 2008, 35(8): 5. |
梁秀璟. 台积电病毒事件:制造业信息安全刻不容缓[J].自动化博览,2018,35(8):5. | |
[8] | WANG Huanhuan.Research on Vulnerability Scanning Technology of Industrial Control System[D]. Beijing: Beijing University of Posts and Telecommunications, 2015. |
王欢欢. 工控系统漏洞扫描技术的研究[D].北京:北京邮电大学,2015. | |
[9] | GA/T 1390A/T 1390.5-2017. Basic Requirements for Network Security Level Protection of Information Security Technology-part 5: Safety Extension Requirements for Industrial Control Systems[S]. Beijing: Standards Press of China, 2018. |
GA/T 1390A/T 1390.5-2017.信息安全技术网络安全等级保护基本要求第5部分:工业控制系统安全扩展要求[S].北京:中国标准出版社,2018. | |
[10] | WANG Ji, ZHAN Naijun, FENG Xinyu, et al.Overview of Formal Methods[J]. Journal of Software, 2019, 30(1): 33-61. |
王戟,詹乃军,冯新宇,等.形式化方法概貌[J].软件学报,2019,30(1):33-61. | |
[11] | WANG Yongjie, XIAN Ming, LIU Jin, et al.Research on Network Security Evaluation Based on Attack Graph Model[J]. Journal of Communications, 2007(3): 29-34. |
王永杰,鲜明,刘进,等.基于攻击图模型的网络安全评估研究[J].通信学报,2007(3):29-34. | |
[12] | WAN Danmei.Random Model Method and Evaluation Technology of Network Security[J]. Journal of Science and Technology Innovation, 2008, 15(30): 85-87. |
万丹梅. 网络安全的随机模型方法与评价技术[J].科技创新导报,2018,15(30):85-87. | |
[13] | HAN Deshuai, YANG Qiliang, XING Jianchun.A Software Adaptive UML Modeling and Its Formal Verification Method[J]. Journal of Software, 2015, 26(4): 730-746. |
韩德帅,杨启亮,邢建春.一种软件自适应UML建模及其形式化验证方法[J].软件学报,2015,26(4):730-746. | |
[14] | GAO Mengzhou, FENG Dongqin, LING Congli, et al.Vulnerability Analysis of Industrial Control System Based on Attack Graph[J]. Journal of ZheJiang University(Engineering Edition), 2014, 48(12): 2123-2131. |
高梦州,冯冬芹,凌从礼,等.基于攻击图的工业控制系统脆弱性分析[J].浙江大学学报:工学版,2014,48(12):2123-2131. | |
[15] | WANG Dejin, JIANG Changqing, PENG Yong.Security Domain based Attack Graph Generation on Industrial Control System[J]. Journal of Tsinghua University(Natural Science Edition), 2014, 54(1): 44-52. |
王得金,江常青,彭勇.工业控制系统上基于安全域的攻击图生成[J].清华大学学报:自然科学版,2014,54(1):44-52. | |
[16] | HUANG Jiahui, FENG Dongqin, WANG Hongjian.Vulnerability Quantification Method of Industrial Control System Based on Attack Graph[J]. Journal of Automation, 2016, 42(5): 792-798. |
黄家辉,冯冬芹,王虹鉴.基于攻击图的工控系统脆弱性量化方法[J].自动化学报,2016,42(5):792-798. | |
[17] | HUANG Huiping, XIAO Shide, MENG Xiangyin.Information Security Risk Assessment of Industrial Control System Based on Attack Tree[J]. Computer Application Research, 2015, 32(10): 3022-3025. |
黄慧萍,肖世德,孟祥印.基于攻击树的工业控制系统信息安全风险评估[J].计算机应用研究,2015,32(10):3022-3025. | |
[18] | KUMAR R, MARIELLE S. QuantitativeSecurity and Safety Analysis with Attack-Fault Trees[EB/OL]. , 2019-2-11. |
[19] | PUYS M, POTET M L, KHALED A.Generation of Applicative Attacks Scenarios Against Industrial Systems[C]//Springer. International Symposium on Foundations and Practice of Security, October 23-25, 2017, Nancy, France. Heidelberg: Springer, 2017: 127-143. |
[20] | SU Qi, WANG Ting, CHEN Tieming, et al. CPS Security Modeling and Verification Based on Time Automata[EB/OL]. , 2019-2-11. |
苏琪,王婷,陈铁明,等.基于时间自动机的CPS安全建模和验证[EB/OL]. , 2019-2-11. | |
[21] | LI Lixing, JIN Zhi, LI Ge.Modeling and Validation of Internet of Things Service Based on Time Automata[J]. Journal of Computer Science, 2011, 34(8): 1365-1377. |
李力行,金芝,李戈.基于时间自动机的物联网服务建模和验证[J].计算机学报,2011,34(8):1365-1377. | |
[22] | WANG Guoqing, ZHUANG Lei, WANG Ruimin, et al.Modeling and Verification of Internet of Things Gateway Security System Based on Time Automata[J]. Journal of Communications, 2018, 39(3): 63-75. |
王国卿,庄雷,王瑞民,等.基于时间自动机的物联网网关安全系统的建模及验证[J].通信学报,2018,39(3):63-75. | |
[23] | PENG Dayan, BU Bing.Modeling and Verification of Typical Operation Scenarios of FAO System Based on UPPAAL[J]. Journal of Railway Science, 2013, 35(6): 65-71. |
彭大天,步兵.基于UPPAAL的FAO系统典型运营场景建模与验证[J].铁道学报,2013,35(6):65-71. |
[1] | 姚萌萌, 唐黎, 凌永兴, 肖卫东. 基于串空间的安全协议形式化分析研究[J]. 信息网络安全, 2020, 20(2): 30-36. |
[2] | 尚文利, 尹隆, 刘贤达, 赵剑明. 工业控制系统安全可信环境构建技术及应用[J]. 信息网络安全, 2019, 19(6): 1-10. |
[3] | 尚文利, 张修乐, 刘贤达, 尹隆. 工控网络局域可信计算环境构建方法与验证[J]. 信息网络安全, 2019, 19(4): 1-10. |
[4] | 陈瑞滢, 陈泽茂, 王浩. 工业控制系统安全监控协议的设计与优化研究[J]. 信息网络安全, 2019, 19(2): 60-69. |
[5] | 姚萌萌, 朱正超, 刘明达. 一种改进的基于认证测试的形式化分析方法[J]. 信息网络安全, 2019, 19(1): 27-33. |
[6] | 余磊, 魏仕民, 江明明. 基于主体关联度的安全协议形式化分析方法[J]. 信息网络安全, 2018, 18(6): 45-51. |
[7] | 耿欣. 烟草企业工业控制系统安全保障体系研究[J]. 信息网络安全, 2017, 17(9): 34-37. |
[8] | 程冬梅, 严彪, 文辉, 孙利民. 基于规则匹配的分布式工控入侵检测系统设计与实现[J]. 信息网络安全, 2017, 17(7): 45-51. |
[9] | 朱鹏飞, 张利琴, 李伟, 于华章. 交互型电子签名的形式化分析[J]. 信息网络安全, 2016, 16(9): 31-34. |
[10] | 王昱镔, 陈思, 程楠. 工业控制系统信息安全防护研究[J]. 信息网络安全, 2016, 16(9): 35-39. |
[11] | 宋国江, 肖荣华, 晏培. 工业控制系统中PLC面临的网络空间安全威胁[J]. 信息网络安全, 2016, 16(9): 228-233. |
[12] | 彭昆仑, 彭伟, 王东霞, 邢倩倩. 信息物理融合系统安全问题研究综述[J]. 信息网络安全, 2016, 16(7): 20-28. |
[13] | 王小山, 杨安, 石志强, 孙利民. 工业控制系统信息安全新趋势[J]. 信息网络安全, 2015, 15(1): 6-11. |
[14] | 王琦魁, 李昕, 赵甫. 工控系统信息安全与加工网络防护方案研究[J]. 信息网络安全, 2014, 14(9): 120-122. |
[15] | 王志强, 王红凯, 张旭东, 沈潇军. 工业控制系统安全隐患及应对措施研究[J]. 信息网络安全, 2014, 14(9): 203-206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||