信息网络安全 ›› 2019, Vol. 19 ›› Issue (5): 10-12.doi: 10.3969/j.issn.1671-1122.2019.05.002

• 技术研究 • 上一篇    下一篇

生成式对抗网络图像增强研究综述

马春光(), 郭瑶瑶, 武朋, 刘海波   

  1. 哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨 150000
  • 收稿日期:2019-02-28 出版日期:2019-05-10 发布日期:2020-05-11
  • 作者简介:

    作者简介:马春光(1974—),男,黑龙江,教授,博士,主要研究方向为智能计算安全与隐私、密码学、区块链、数据安全与隐私等;郭瑶瑶(1993—),女,河北,硕士研究生,主要研究方向为人工智能安全;武朋(1974—),女,河北,实验师,硕士,主要研究方向为数据安全与隐私;刘海波(1976—),男,黑龙江,副教授,博士,主要研究方向为模式识别与机器学习、计算机视觉、信息与系统安全。

  • 基金资助:
    国家自然科学基金[61472097];黑龙江省自然科学基金[F2018011]

Review of Image Enhancement Based on Generative Adversarial Networks

Chunguang MA(), Yaoyao GUO, Peng WU, Haibo LIU   

  1. College of Computer Science and Technology, Harbin Engineering University, Harbin Heilongjiang 150000, China
  • Received:2019-02-28 Online:2019-05-10 Published:2020-05-11

摘要:

近年来,生成式对抗网络(GAN)为图像增强提供了新的技术和手段,具有比传统深度学习更强大的特征学习和表达能力,在图像增强领域取得了显著成功。文章首先介绍了GAN模型的基本思想和原理,分析了GAN各个变体改进的方式及优缺点;其次从图像质量提高、图像生成、图像补全和其他图像处理的应用等方面分析了GAN应用于图像增强的研究现状;最后归纳总结了GAN模型与其在图像增强中面临的问题,并对问题的解决方案及未来应用进行了总结展望。

关键词: 生成式对抗网络, 深度学习, 生成模型, 图像增强

Abstract:

In recent years, generative adversarial networks(GAN) has provided new techniques and means for image enhancement. It has more powerful feature learning and expression capabilities than traditional deep learning, and has achieved remarkable success in the field of image enhancement. Firstly, the basic ideas and principles of GAN model are introduced, and the improvement methods, advantages and disadvantages of GAN variants are analyzed. Secondly, the research status of GAN applied to image enhancement is analyzed from the aspects of image quality improvement, image generation, image complementation and other image processing applications. Finally, the GAN model and the problems in image enhancement are summarized and summarized, and the solution and future application of the problem are summarized.

Key words: generative adversarial networks, deep learning, generated model, image enhancement

中图分类号: