信息网络安全 ›› 2019, Vol. 19 ›› Issue (5): 10-12.doi: 10.3969/j.issn.1671-1122.2019.05.002
收稿日期:
2019-02-28
出版日期:
2019-05-10
发布日期:
2020-05-11
作者简介:
作者简介:马春光(1974—),男,黑龙江,教授,博士,主要研究方向为智能计算安全与隐私、密码学、区块链、数据安全与隐私等;郭瑶瑶(1993—),女,河北,硕士研究生,主要研究方向为人工智能安全;武朋(1974—),女,河北,实验师,硕士,主要研究方向为数据安全与隐私;刘海波(1976—),男,黑龙江,副教授,博士,主要研究方向为模式识别与机器学习、计算机视觉、信息与系统安全。
基金资助:
Chunguang MA(), Yaoyao GUO, Peng WU, Haibo LIU
Received:
2019-02-28
Online:
2019-05-10
Published:
2020-05-11
摘要:
近年来,生成式对抗网络(GAN)为图像增强提供了新的技术和手段,具有比传统深度学习更强大的特征学习和表达能力,在图像增强领域取得了显著成功。文章首先介绍了GAN模型的基本思想和原理,分析了GAN各个变体改进的方式及优缺点;其次从图像质量提高、图像生成、图像补全和其他图像处理的应用等方面分析了GAN应用于图像增强的研究现状;最后归纳总结了GAN模型与其在图像增强中面临的问题,并对问题的解决方案及未来应用进行了总结展望。
中图分类号:
马春光, 郭瑶瑶, 武朋, 刘海波. 生成式对抗网络图像增强研究综述[J]. 信息网络安全, 2019, 19(5): 10-12.
Chunguang MA, Yaoyao GUO, Peng WU, Haibo LIU. Review of Image Enhancement Based on Generative Adversarial Networks[J]. Netinfo Security, 2019, 19(5): 10-12.
表1
GAN模型对比
GAN模型 | 改进 | 优点 | 缺点 |
---|---|---|---|
CGAN | 对模型增加约束条件,指导数据生成过程 | 对输入输出增加一个标签,能生成指定目标,收敛更快 | 对数据要求高,需要有标签或标记好的数据集 |
DCGAN | 与CNN结合,采用分步卷积、批量标准化、LRELU等操作 | 稳定训练过程,易收敛,生成样本种类更丰富 | 训练不同数据需调整参数,模型易崩溃,会出现梯度消失或爆炸 |
WGAN | 权重剪枝 | 训练过程更稳定,理论上解决梯度消失问题 | 权重的不恰当剪枝可能导致梯度消失或爆炸 |
StackGAN | 采用两个GAN,第1个根据文本生成粗糙的图像,第2个修正生成的图像并添加细节 | 通过分阶段生成,最终生成的图像清晰度提高 | 生成任务的两个阶段可能找不到重点,导致生成失败 |
infoGAN | 增加Q网络,通过无监督学习学到生成数据的类型 | 判别器准确率更高,并可以按照类别输出 | 约束条件选择和优化项求解困难 |
SAGAN | 使用来自所有特征位置的线索生成详细信息,判别器可以检查整个图像特征是否彼此一致,将频谱归一化应用于GAN生成器 | 可以发现图像中的依赖关系,协调好每个位置细节与远端细节关系,可以对全局图像实施复杂的几何约束,生成图像质量更高 | 训练过程需要给G和D不同的学习速率 |
[1] | GOODFELLOW I J, POUGET-ABADAIE J, MIRZA M, et al.Generative Adversarial Nets[C]//ACM. 27th International Conference on Neural Information Processing Systems, December 8-13, 2014, Montreal, Canada. New York: ACM, 2014: 2672-2680. |
[2] | FU Jianming, LI Lin, ZHENG Rui, et al.Survey of Network Attack Detection Based on GAN[J]. Netinfo Security, 2019, 19(2): 1-9. |
傅建明,黎琳,郑锐,等.基于GAN的网络攻击检测研究综述[J]. 信息网络安全,2019,19(2):1-9. | |
[3] | SONG Lei, MA Chunguang, DUAN Guanghan.Research Progress on Machine Learning Security and Privacy Protection[J]. Chinese Journal of Network and Information Security, 2018, 4(8): 1-11. |
宋蕾,马春光,段广晗. 机器学习安全及隐私保护研究进展.[J]. 网络与信息安全学报,2018,4(8):1-11. | |
[4] | CRESWELL A, WHITE T, DUMOULIN V, et al.Generative Adversarial Networks: An Overview[J]. IEEE Signal Processing Magazine, 2017, 35(1): 53-65. |
[5] | MIRZA M, OSINDERO S. Conditional Generative Adversarial Nets[EB/OL]. , 2018-11-22. |
[6] | BENGIO Y, DAUPHIN Y, G M G, et al. Better Mixing via Deep Representations[C]//ACM. 30th International Conference on International Conference on Machine Learning, June 16-21, 2014, Atlanta, GA, USA. New York: ACM 2013: 552-560. |
[7] | RADFORD A, METZ L, CHINTALA S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[EB/OL]. , 2018-11-22. |
[8] | DOSOVITSKIY A, TOBIAS SPRINGENBERG J, BROX T.Learning to Generate Chairs With Convolutional Neural Networks[C]//IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition, June 7-12, 2015, Boston, MA, USA. New Jersey: IEEE, 2013: 1538-1546. |
[9] | HARDT M, RECHT B, SINGER Y. Train Faster, Generalize Better: Stability of Stochastic Gradient Descent[C]//IMLS. 33rd International Conference on International Conference on Machine Learning, June 19-24, New York, USA. New York: PMLR, 2016: 1225-1234. |
[10] | LOFFE S, SZEGEDY C.Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]//ACM. 32nd International Conference on Machine Learning, July 6-11, 2015, Lille, France. Cambridge: MIT, 2015: 448-456. |
[11] | NAIR V, HINTON G E.Rectified Linear Units Improve Restricted Boltzmann Machines[C]//ACM. 27th International Conference on Machine Learning, June 21-24, Haifa, Israel. New York: 2010: 807-814. |
[12] | MAAS A L, HANNUN A Y, NG A Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models[EB/OL]. , 2018-11-22. |
[13] | XU Bing, WANG Naiyan, CHEN Tianqi, et al. Empirical Evaluation of Rectified Activations in Convolutional Network[EB/OL]. . |
[14] | GOODFELLOW I J, WARDE-FARLEY D, MIRZA M, et al.Maxout networks[C]//IMLS. 30th International Conference on Machine Learning, June 16-21, Atlanta USA. New York: PMLR, 2013: 1311-1319. |
[15] | HAN Chongzhao.Multi-source Information Fusion[M]. Beijing: Tsinghua University Press, 2006. |
韩崇昭. 多源信息融合[M]. 北京:清华大学出版社,2006. | |
[16] | YAN Junhua, CHEN Shaohua, AI Shufang, et al.Improved CAMShift Target Tracking Based on Kalman Predictor[J]. Journal of Chinese Inertial Technology, 2014, 22(4): 536-542. |
闫钧华,陈少华,艾淑芳,等. 基于Kalman 预测器的改进的CAMShift目标跟踪[J]. 中国惯性技术学报,2014,22(4):536-542. | |
[17] | ZHAO Gaochang, ZHANG Lei, WU Fengbo.Application of Improved Median Filtering Algorithm in Image Denoising[J]. Journal of Applied Optics, 2011, 32(4): 678-682. |
赵高长,张磊,武风波. 改进的中值滤波算法在图像去噪中的应用[J]. 应用光学,2011,32(4):678-682. | |
[18] | SHENG Zhe.UAV Attitude Control and Autonomous Returning Technology Based on Visual Navigation[D]. Shanghai: Shanghai Jiaotong University, 2015. |
盛哲. 基于视觉导航的无人机位姿控制与自主返航技术[D]. 上海:上海交通大学,2015. | |
[19] | WANG Xiangpeng.Research on Key Algorithms of Agricultural UAV Visual Navigation under GPS Failure[D]. Qingdao: Qingdao University of Science and Technology, 2014. |
王翔鹏. GPS失效情况下农用无人机视觉导航关键算法研究[D]. 青岛:青岛科技大学,2014. | |
[20] | ZHANG Han, XU Tao, LI Hongsheng, et al.StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks[C]//IEEE. 16th IEEE International Conference on Computer Vision, October 22-29, 2017, Venice, Italy. New Jersey: IEEE, 2017: 5908-5916. |
[21] | CHEN Xi, DUAN Yan, HOUTHOOFT R, et al.InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets[C]//NIPS. 30st International Conference on Neural Information Processing Systems, December 5-10, 2016, Barcelona Spain. New York: Curran Associates, 2016: 2180-2188. |
[22] | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[EB/OL]. , 2018-11-22. |
[23] | ZHENG Huabin. Wasserstein GAN[EB/OL]. , 2017-4-2. |
郑华滨.令人拍案叫绝的Wasserstein GAN[EB/OL]. ,2017-4-2. | |
[24] | ZHANG Han, GOODFELLOW I, METAXAS D, et al. Self-Attention Generative Adversarial Networks[EB/OL]. , 2018-11-23. |
[25] | HEUSEL M, RAMSAUER H, UNTERTHINER T, et al.GANs Trained by a Two Time-scale Update Rule Converge to a Local Nash Equilibrium[C]//NIPS. 31st International Conference on Neural Information Processing Systems, December 4-9, 2017, Long Beach, California, USA. New York: Curran Associates, 2017: 6629-664. |
[26] | CUI Zhengyang, HU Aiqun, PENG Linning.A Method of RF Fingerprint Recognition Based on Contour Feature[J]. Netinfo Security, 2017, 17(10): 75-80. |
崔正阳,胡爱群,彭林宁. 一种基于轮廓特征的射频指纹识别方法[J]. 信息网络安全,2017,17(10):75-80. | |
[27] | RAHMAN S, RAHMAN M M, HUSSAIN K, et al.Image Enhancement in Spatial Domain: A Comprehensive Study[C]//IEEE. 17th International Conference on Computer and Information Technology, December 22-23, 2014, Dhaka, Bangladesh. New Jersey: IEEE, 2014: 368-373. |
[28] | WEEKS A R.Fundamentals of Electronic Image Processing[M]. Bellingham: SPIE Optical Engineering Press, 1996. |
[29] | RADFORD A, METZ L, CHINTALA S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[EB/OL]. , 2018-11-23. |
[30] | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al.Improved Techniques for Training GANs[C]//NIPS. 30st International Conference on Neural Information Processing Systems, December 5-10, 2016, Barcelona Spain. New York: Curran Associates, 2016: 2234-2242. |
[31] | ZHANG Long, ZHAO Yujie, YE Xulun, et al.Collaborative Generation of Confrontation Networks[J]. Acta Automatica Sinica, 2018, 44(5): 804-810. |
张龙,赵杰煜,叶绪伦,等. 协作式生成对抗网络[J]. 自动化学报,2018,44(5):804-810. | |
[32] | KINGMA D P, WELLING M. Auto-encoding Variational Bayes[EB/OL]. , 2018-11-24. |
[33] | DETON E, CHINTALA S, SZLAM A, et al.Deep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks[C]//ACM. 28th International Conference on Neural Information Processing Systems, December 7-12, 2015, Montreal, Canada. New York: ACM, 2015: 1486-1494. |
[34] | DOSOVITSKIY A, BROX T.Generating Images with Perceptual Similarity Metrics Based on Deep Networks[C]//NIPS. 30st International Conference on Neural Information Processing Systems, December 5-10, 2016, Barcelona Spain. New York: Curran Associates, 2016: 658-666. |
[35] | ZHU Junyan, KRÄHENBÜHL, P, SHECHTMAN E, et al. Generative Visual Manipulation on the Natural Image Manifold[C]//Springer. 14th European Conference on Computer Vision, October 11-14, 2016, Amsterdam, Netherlands. Heidelberg: Springer, 2016: 597-613. |
[36] | REED S, AKATA Z, YAN Xinchen, et al.Generative Adversarial Text to Image Synthesis[C]//IMLS. 33rd International Conference on International Conference on Machine Learning, June 19-24, New York, USA. New York: PMLR, 2016: 1060-1069. |
[37] | DENG Y, LOY C C, TANG Xiaoou.Aesthetic-driven Image Enhancement by Adversarial Learning[C]//ACM. 2018 ACM Multimedia Conference, October 22-26, Amsterdam, Seoul, South Korea. New York: ACM, 2018: 870-878. |
[38] | PERRONNIN F.AVA: A Large-scale Database for Aesthetic Visual Analysis[C]//IEEE. 2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New Jersey: IEEE, 2012: 2408-2415. |
[39] | LUO Wei, WANG Xiaogang, TANG Xiaoou.Content-based Photo Quality Assessment[J]. IEEE Transactions on Multimedia, 2013, 15(8): 1930-1943. |
[40] | ZHANG Hui, WANG Kunfeng, WANG Feiyue.Application Progress and Prospect of Deep Learning in Target Visual Detection[J]. Acta Automatica Sinica, 2017, 43(8): 1289-1305. |
张慧,王坤峰,王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报,2017,43(8):1289-1305. | |
[41] | STAUFFER C, GRIMSON W E L. Adaptive Background Mixture Models for Real-time Tracking[C]//IEEE. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 23-25, 1999, Fort Collins, Colorado. New Jersey: IEEE, 1999: 246-252. |
[42] | ZIVKOVIC Z.Improved Adaptive Gaussian Mixture Model for Background Subtraction[C]//IEEE. 17th International Conference on Pattern Recognition, August 23-26, 2004, Cambridge, UK. New Jersey: IEEE, 2004: 28-31. |
[43] | ST-CHARLES P L, BILODEAU G A. Improving Background Subtraction Using Local Binary Similarity Patterns[C]//IEEE. 2014 IEEE Winter Conference on Applications of Computer Vision, March 24-26, 2014, Steamboat Springs, CO, USA. New Jersey: IEEE, 2014: 509-515. |
[44] | FAN Jingjing, XIN Yanzhe, DAI Fenglin, et al.Distributed Multi-camera Object Tracking with Bayesian inference[C]//IEEE. 2011 IEEE International Symposium of Circuits and Systems, May 15-18, 2011, Riode Janeiro, Brazil. New Jersey: IEEE, 2011: 357-360. |
[45] | YAN Junhua, WANG Jiayi, XIE Tianxia, et al.Variational Bayesian Learning for Background Subtraction Based on Local Fusion Feature[J]. IET Computer Vision, 2017, 10(8): 884-893. |
[46] | WANG Yi, JODOIN P M, PORIKLI F, et al.CDnet 2014: An Expanded Change Detection Benchmark Dataset[C]//IEEE. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, June 23-28, 2014, Columbus, OH, USA. New Jersey: IEEE, 2014: 393-400. |
[47] | MARTINS I, CARVALHO P, CORTE-REAL L, et al.BMOG: Boosted Gaussian Mixture Model with Controlled Complexity[C]//Springer. Iberian Conference on Pattern Recognition and Image Analysis, June 20-23, 2017, Faro, Portugal. Heidelberg: Springer, 2017: 50-57. |
[48] | SEHAIRI K, CHOUIREB F, MEUNIER J.Comparative Study of Motion Detection Methods for Video Surveillance Systems[J]. Journal of Electronic Imaging, 2017, 26(2): 23-25. |
[49] | CHEN Yinigying, WANG Jinqiao, LU Hanqiang.Learning Sharable Models for Robust Background Subtraction[C]//IEEE. 2015 IEEE International Conference on Multimedia and Expo, June 29-July 3, 2015, Turin, Italy. New Jersey: IEEE, 2015: 1-6. |
[50] | JIANG Shengqin, LU Xiaobo.Wesambe: A Weight-sample-based Method for Background Subtraction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(9): 2105-2115. |
[51] | ZHENG Wenbo, WANG Kunfeng, WANG Feiyue.Background Subtraction Algorithm Based on Bayesian Generation Confrontation Network[J]. Acta Automatica Sinica, 2018, 44(5): 878-890. |
郑文博,王坤峰,王飞跃. 基于贝叶斯生成对抗网络的背景消减算法[J]. 自动化学报,2018,44(5):878-890. | |
[52] | BRAHAM M, VAN DROOGENBROECK M.Deep Background Subtraction with Scene-Specific Convolutional Neural Networks[C]//IEEE. IEEE International Conference on Systems, Signals and Image Processing (IWSSIP), May 23-25, 2016, Bratislava, Slovakia. Washington, DC, USA: EEE Computer Society, 2016: 1-4. |
[53] | LI Shutao, WEI Dan.Compressed Sensing Overview[J]. Acta Automatica Sinica, 2009, 35(11): 1369-1377. |
李树涛,魏丹. 压缩传感综述[J]. 自动化学报,2009,35(11):1369-1377. | |
[54] | PENG Yigang, SUO Jinli, DAI Qionghai, et al.From Compressed Sensing to Low Rank Matrix Recovery: Theory and Applications[J]. Acta Automatica Sinica, 2013, 39(7): 981-994. |
彭义刚,索津莉,戴琼海,等. 从压缩传感到低秩矩阵恢复:理论与应用[J]. 自动化学报,2013,39(7):981-994. | |
[55] | ZHAO Shuyang, LI Jianwu.Low-rank Image Generation Method Based on Generating Confrontation Network[J]. Acta Automatica Sinica, 2018, 44(5): 829-839. |
赵树阳,李建武. 基于生成对抗网络的低秩图像生成方法[J]. 自动化学报,2018,44(5):829-839. | |
[56] | LU Qianwen, TAO Qingchuan, ZHAO Yalin, et al.Simplified Based on Comic Draft Drawings Generated Against the Web[J]. Acta Automatica Sinica, 2018, 44(5): 840-854. |
卢倩雯,陶青川,赵娅琳,等. 基于生成对抗网络的漫画草稿图简化[J]. 自动化学报,2018,44(5):840-854. | |
[57] | SUN Liang, HAN Yuxuan, KANG Wenjing, et al.Multi-view Learning and Reconstruction Algorithm Based on Generating Confrontation Network[J]. Acta Automatica Sinica, 2018, 44(5): 819-828. |
孙亮,韩毓璇,康文婧,等. 基于生成对抗网络的多视图学习与重构算法[J]. 自动化学报,2018,44(5):819-828. | |
[58] | YAO Naiming, GUO Qingpei, QIAO Fengchun, et al.Robust Facial Expression Recognition Based on Generative Confrontation Network[J]. Acta Automatica Sinica, 2018, 44(5): 865-877. |
姚乃明,郭清沛,乔逢春,等. 基于生成式对抗网络的鲁棒人脸表情识别[J]. 自动化学报,2018,44(5):865-877. | |
[59] | LIU Chang, WU Xiaolin, SHU Xiao. Learning-Based Dequantization For Image Restoration Against Extremely Poor Illumination[EB/OL]. https://arxiv.org/pdf/1803.01532.pdf, 2018-11-25. |
[60] | TANG Xianlun, DU Yiming, LIU Yuwei, et al.Image Recognition Method Based on Conditional Deep Convolution to Generate Anti-network[J]. Acta Automatica Sinica, 2018, 44(5): 855-864. |
唐贤伦,杜一铭,刘雨微,等. 基于条件深度卷积生成对抗网络的图像识别方法[J]. 自动化学报,2018,44(5):855-864. | |
[61] | WEI Jiahui, CHEN Yuanping, REN Peng, et al. Image Enhancement with Conditional Adversarial Networks[EB/OL]. , 2018-11-26. |
[62] | ISOLA P, ZHU Junyan, ZHOU Tinghui, et al.Image-to-Image Translation with Conditional Adversarial Networks[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition, July 22-25, Honolulu, Hawaii. New Jersey: IEEE, 2017: 5967-5976. |
[63] | DAI Bo, FIDLER S, URTASUN R, et al.Towards Diverse and Natural Image Descriptions via a Conditional GAN[C]//IEEE. 2017 IEEE International Conference on Computer Vision, October 22-29, 2017, Venice, Italy. New Jersey: IEEE, 2017: 2989-2998. |
[64] | ARJOVSKY M, BOTTOU L. Towards Principled Methods for Training Generative Adversarial Networks[EB/OL]. , 2018-11-25. |
[65] | WU Zhirong, SONG Shuran, KHOSLA A, et al.3D ShapeNets: A Deep Representation for Volumetric Shapes[C]//IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition, June 8-10, 2015, Boston, Massachusetts, US. New Jersey: IEEE, 2015: 1912-1920. |
[66] | ARORA S, GE Rong, LIANG Yingyu, et al.Generalization and Equilibrium in Generative Adversarial Nets (GANs)[C]//IMLS. 34th International Conference on Machine Learning, August 6-11, 2017, Sydney, NSW, Australia. New York: PMLR, 2017: 224-232. |
[67] | THEIS L, OORD A, BETHGE M.A Note on the Evaluation of Generative Models[C]//Yoshua Bengio, Yann LeCun. 2016 International Conference on Learning Representations, May 2-4, 2016, San Juan, PR, US. New York: PMLR, 2016: 1-10. |
[1] | 王蓉, 马春光, 武朋. 基于联邦学习和卷积神经网络的入侵检测方法[J]. 信息网络安全, 2020, 20(4): 47-54. |
[2] | 谢永恒, 冯宇波, 董清风, 王梅. 基于深度学习的数据接入方法研究[J]. 信息网络安全, 2019, 19(9): 36-40. |
[3] | 方勇, 朱光夏天, 刘露平, 贾鹏. 基于深度学习的浏览器Fuzz样本生成技术研究[J]. 信息网络安全, 2019, 19(3): 26-33. |
[4] | 朱海麒, 姜峰. 人工智能时代面向运维数据的异常检测技术研究与分析[J]. 信息网络安全, 2019, 19(11): 24-35. |
[5] | 段大高, 谢永恒, 盖新新, 刘占斌. 基于神经网络的微博虚假消息识别模型[J]. 信息网络安全, 2017, 17(9): 134-137. |
[6] | 任浩, 罗森林, 潘丽敏, 高君丰. 基于图结构的文本表示方法研究[J]. 信息网络安全, 2017, 17(3): 46-52. |
[7] | 雷青, 荆丽桦, 赵德明, 郑继龙. 基于深度学习的安卓APP视频枪支检测技术研究[J]. 信息网络安全, 2016, 16(9): 149-153. |
[8] | 崔鹏飞, 裘玥, 孙瑞. 面向网络内容安全的图像识别技术研究[J]. 信息网络安全, 2015, 15(9): 154-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||