信息网络安全 ›› 2018, Vol. 18 ›› Issue (12): 54-65.doi: 10.3969/j.issn.1671-1122.2018.12.008

• 技术研究 • 上一篇    下一篇

基于上下文聚类的云虚拟机异常检测与识别策略

何利, 姚元辉()   

  1. 重庆邮电大学计算机科学与技术学院,重庆 400065
  • 收稿日期:2018-09-30 出版日期:2018-12-20 发布日期:2020-05-11
  • 作者简介:

    作者简介:何利(1977—),女,重庆,教授,博士,主要研究方向为移动云计算;姚元辉(1994—),男,重庆,硕士研究生,主要研究方向为移动云计算。

  • 基金资助:
    国家自然科学基金[61602073];重庆市基础与前沿科技项目[cstc2017jcyjA0818]

Detection and Recognition Strategy for Anomaly of Cloud Virtual Machine Based on Context Clustering

Li HE, Yuanhui YAO()   

  1. College of Computer, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Received:2018-09-30 Online:2018-12-20 Published:2020-05-11

摘要:

根据虚拟机的运行特点,文章提出一种基于上下文聚类的虚拟机异常检测策略。该策略采用一种新的聚类初始中心点选取策略将具有相似上下文运行环境的虚拟机实例进行聚集,对影响空间的局部异常因子算法进行增量式改进,针对每一个上下文类簇构建了上下文异常检测模型。对实时采集的虚拟机实例按照其包含的上下文信息将其匹配到相应上下文异常检测模型中,相应的上下文异常检测模型能够对新采集的虚拟机实例进行增量式异常检测。多个数值实验证明文章提出的异常检测模型和识别算法是有效且高效的。

关键词: 云计算, 虚拟机, 异常检测, 上下文聚类, 增量式

Abstract:

According to the characteristics of virtual machine, an exception detection strategy based on context clustering is proposed, which uses a new clustering initial center selection strategy to aggregate virtual machine instances with similar context running environment. Then, the local anomaly factor algorithm that affects space is improved incrementally, and a context anomaly detection model is constructed for each contextual cluster. The real-time acquisition virtual machine is matched to the corresponding context anomaly detection model according to the context information contained. The corresponding context anomaly detection model can incrementally detect the newly collected virtual machine instance. Several numerical experiments show that the proposed anomaly detection model and recognition algorithm are effective and efficient.

Key words: cloud computing, virtual machine, anomaly detection, context clustering, incrementally

中图分类号: