信息网络安全 ›› 2024, Vol. 24 ›› Issue (4): 491-508.doi: 10.3969/j.issn.1671-1122.2024.04.001

• 综述论文 • 上一篇    下一篇

基于半监督学习的网络异常检测研究综述

张浩1,2(), 谢大智1,2, 胡云晟1,2, 叶骏威1,2   

  1. 1.福州大学计算机与大数据学院,福州 350116
    2.福建省网络计算与智能信息处理重点实验室,福州 350116
  • 收稿日期:2023-10-26 出版日期:2024-04-10 发布日期:2024-05-16
  • 通讯作者: 张浩 zhanghao@fzu.edu.cn
  • 作者简介:张浩(1981—),男,安徽,副教授,博士,CCF高级会员,主要研究方向为信息安全、安全大数据分析和计算智能算法|谢大智(2001—),男,安徽,硕士研究生,主要研究方向为网络安全、机器学习|胡云晟(2001—),男,安徽,硕士研究生,主要研究方向为网络安全、机器学习|叶骏威(2000—),男,福建,硕士研究生,主要研究方向为网络安全、机器学习
  • 基金资助:
    国家自然科学基金重点项目(U1804263);国家自然科学基金重点项目(U21A20472);国家留学基金青年骨干教师出国研修项目(202006655011);福建省自然科学基金(2021J01616);福建省自然科学基金(2020J01130167);福建省自然科学基金(2021J01625)

A Review of Network Anomaly Detection Based on Semi-Supervised Learning

ZHANG Hao1,2(), XIE Dazhi1,2, HU Yunsheng1,2, YE Junwei1,2   

  1. 1. College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China
    2. Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou 350116, China
  • Received:2023-10-26 Online:2024-04-10 Published:2024-05-16

摘要:

网络流量数据的获取较为容易,而对流量数据进行标记相对困难。半监督学习利用少量有标签数据和大量无标签数据进行训练,减少了对有标签数据的需求,能较好适应海量网络流量数据下的异常检测。文章对近年来的半监督网络异常检测领域的论文进行深入调研。首先,介绍了一些基本概念,并深入剖析了网络异常检测中使用半监督学习策略的必要性;然后,从半监督机器学习、半监督深度学习和半监督学习结合其他范式三个方面,分析和比较了半监督网络异常检测领域近年来的论文,并进行归纳和总结;最后,对当前半监督网络异常检测领域进行了现状分析和未来展望。

关键词: 半监督学习, 标签稀缺, 入侵检测, 异常检测

Abstract:

The acquisition of network traffic data is relatively easy, while marking the traffic data is comparatively challenging. Semi-supervised learning utilizes a small amount of labeled data and a large amount of unlabeled data for training, reducing the demand for labeled data and effectively adapting to anomaly detection in massive network traffic data. This paper conducted an in-depth investigation into the field of semi-supervised network anomaly detection in recent years. Firstly, it introduced some basic concepts and thoroughly analyzes the necessity of using semi-supervised learning strategies in network anomaly detection. Then, from the perspectives of semi-supervised machine learning, semi-supervised deep learning, and the combination of semi-supervised learning with other paradigms, it analyzed and compared the recent literature on semi-supervised network anomaly detection and summarized the findings. Finally, the current status and future prospects of the field of semi-supervised network anomaly detection were analyzed.

Key words: semi-supervised learning, label scarcity, intrusion detection, anomaly detection

中图分类号: