信息网络安全 ›› 2024, Vol. 24 ›› Issue (3): 438-448.doi: 10.3969/j.issn.1671-1122.2024.03.009
收稿日期:
2023-12-15
出版日期:
2024-03-10
发布日期:
2024-04-03
通讯作者:
孙峰
E-mail:sun.feng@my.swjtu.edu.cn
作者简介:
张新有(1971—),男,河南,副教授,博士,主要研究方向为分布式计算与应用、网络安全|孙峰(1999—),男,安徽,硕士研究生,主要研究方向为深度学习、网络信息安全|冯力(1974—),男,四川,教授,博士,主要研究方向为人工智能和网络安全|邢焕来(1984—),男,河北,副教授,博士,CCF会员,主要研究方向为人工智能和网络安全
基金资助:
ZHANG Xinyou, SUN Feng(), FENG Li, XING Huanlai
Received:
2023-12-15
Online:
2024-03-10
Published:
2024-04-03
Contact:
SUN Feng
E-mail:sun.feng@my.swjtu.edu.cn
摘要:
社交网络已经成为人们日常生活中获取和分享信息的主要渠道,同时也为虚假新闻的传播提供了捷径。如今,针对网络虚假新闻的检测问题受到学术界的广泛关注,但目前的检测方法缺乏基于新闻多个视角的深度探索或忽视了新闻中不同信息传播方向不同的问题,有待改进。文章提出一种基于新闻内容、用户信息和新闻传播3种视角的多视图表征和检测的模型MVRFD(Multi-View Representations for Fake News Detection),为虚假新闻检测任务提供更全面的视角。首先,利用协同注意力机制表征新闻内容中的多模态信息,使用具有不同方向的图神经网络聚合新闻传播过程中的用户信息和观点信息;然后,利用双协同注意力机制实现多个视角间的信息交互;最后,将新闻内容特征和新闻上下文特征进行融合。在公开数据集上的实验结果表明,文章所提出的模型实现了96.7%的准确率和96.8%的F1值,优于主流的文本处理模型以及基于单视角的检测模型。
中图分类号:
张新有, 孙峰, 冯力, 邢焕来. 基于多视图表征的虚假新闻检测[J]. 信息网络安全, 2024, 24(3): 438-448.
ZHANG Xinyou, SUN Feng, FENG Li, XING Huanlai. Multi-View Representations for Fake News Detection[J]. Netinfo Security, 2024, 24(3): 438-448.
表2
微博数据集实验结果
Model | 准确率 | 虚假新闻 | 真实新闻 | ||||
---|---|---|---|---|---|---|---|
精确度 | 召回率 | F1 | 精确度 | 召回率 | F1 | ||
LSTM | 87.8 % | 88.5 % | 87.7 % | 87.9 % | 86.5 % | 88.1 % | 87.0 % |
BERT | 89.7 % | 88.7 % | 91.4 % | 89.9 % | 90.5 % | 87.9 % | 89.0 % |
BERT+Attention | 91.1 % | 91.0 % | 91.8 % | 91.3 % | 91.3 % | 90.1 % | 90.6 % |
TextCNN | 90.4 % | 90.3 % | 91.5 % | 90.5 % | 91.0 % | 89.9 % | 90.0 % |
CARMN | 92.5 % | 92.2 % | 92.7 % | 92.4 % | 92.7 % | 92.3 % | 92.5 % |
Bi-GCN | 94.4 % | 92.6 % | 96.8 % | 94.6 % | 96.6 % | 92.0 % | 94.1 % |
DA-GCN | 94.4 % | 94.1 % | 94.6 % | 94.4 % | 94.7 % | 94.1 % | 94.4 % |
DAN-Tree | 95.8 % | 94.6 % | 97.2 % | 95.8 % | 97.2 % | 94.5 % | 95.8 % |
MVRFD | 96.7 % | 96.0 % | 97.7 % | 96.8 % | 97.5 % | 95.5 % | 96.4 % |
[1] | YANG Fan, YU Xiaohui, LIU Yang, et al. Automatic Detection of Rumor on Sina Weibo[C]// ACM. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 1-7. |
[2] | ZHAO Zhe, RESNICK P, MEI Qiaozhu. Enquiring Minds: Early Detection of Rumors in Social Media from Enquiry Posts[C]// ACM. The 24th International Conference on World Wide Web. New York: ACM, 2015: 1395-1405. |
[3] | HOOI B, SHAH N, BEUTEL A, et al. BIRDNEST: Bayesian Inference for Ratings-Fraud Detection[C]// SIAM. The 2016 SlAM Internationa Conference on Data Mining. Philadelphia: SIAM, 2016: 495-503. |
[4] | GIRGIS S, AMER E, GADALLAH M. Deep Learning Algorithms for Detecting Fake News in Online Text[C]// IEEE. The 13th International Conference on Computer Engineering and Systems. New York: IEEE, 2018: 93-97. |
[5] | DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding[C]// ACL. Proceedings of NAACL-HLT. Stroudslourg: ACL 2019, 1: 4171-4186. |
[6] | DU Pengfei, LI Xiaoyong, GAO Yali. Survey on Multimodal Visual Language Representation Learning[J]. Journal of Software, 2021, 32(2): 327-348. |
杜鹏飞, 李小勇, 高雅丽. 多模态视觉语言表征学习研究综述[J]. 软件学报, 2021, 32(2): 327-348. | |
[7] | WU Ke, SONG Yang, ZHU K Q. False Rumors Detection on Sina Weibo by Propagation Structures[C]// IEEE. The 31st IEEE International Conference on Data Engineering. New York: IEEE, 2015: 651-662. |
[8] | BIAN Tian, XIAO Xi, XU Tingyang, et al. Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks[C]// AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020, 34(1): 549-556. |
[9] | SONG Chenguang, TENG Yiyang, ZHU Yangfu, et al. Dynamic Graph Neural Network for Fake News Detection[J]. Neurocomputing, 2021(505): 27-31. |
[10] |
SONG Chenguang, SHU Kai, WU Bin, et al. Temporally Evolving Graph Neural Network for Fake News Detection[J]. Information Processing & Management, 2021, 58(6): 102712.
doi: 10.1016/j.ipm.2021.102712 URL |
[11] |
SONG Chenguang, NING Nianwen, ZHANG Yunlei, et al. A Multimodal Fake News Detection Model Based on Crossmodal Attention Residual and Multichannel Convolutional Neural Networks[J]. Information Processing & Management, 2021, 58(1): 102437.
doi: 10.1016/j.ipm.2020.102437 URL |
[12] |
XIONG Shufeng, ZHANG Guipeng, BATRA V, et al. TRIMOON: Two-Round Inconsistency-Based Multi-Modal Fusion Network for Fake News Detection[J]. Information Fusion, 2023, 93: 150-158.
doi: 10.1016/j.inffus.2022.12.016 URL |
[13] | QI Peng, CAO Juan, LI Xirong, et al. Improving Fake News Detection by Using an Entity-Enhanced Framework to Fuse Diverse Multimodal Clues[C]// ACM. Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 1212-1220. |
[14] | CHEN Yiyuan, LI Dongsheng, ZHANG Peng, et al. Cross-Modal Ambiguity Learning for Multimodal Fake News Detection[C]// ACM. The ACM Web Conference. New York: ACM, 2022: 2897-2905. |
[15] | MA Jing, GAO Wei, MITRA P, et al. Detecting Rumors from Microblogs with Recurrent Neural Networks[C]// ACM. The 25th International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 3818-3824. |
[16] | WEI Lingwei, HU Dou, ZHOU Wei, et al. Uncertainty-Aware Propagation Structure Reconstruction for Fake News Detection[C]// ACL. The 29th International Conference on Computational Linguistics. Stroudsburg: ACL, 2022, 29(1): 2759-2768. |
[17] | SUN Ling, RAO Yuan, LAN Yuqian, et al. HG-SL: Jointly Learning of Global and Local User Spreading Behavior for Fake News Early Detection[C]// AAAI. Proceedings of the 37th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2023, 37(4): 5248-5256. |
[18] | DOU Yingtong, SHU Kai, XIA Congying, et al. User Preference-Aware Fake News Detection[C]// ACM. The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 2051-2055. |
[19] |
RAN Hongyan, JIA Caiyan, ZHANG Pengfei, et al. MGAT-ESM: Multi-Channel Graph Attention Neural Network with Event-Sharing Module for Rumor Detection[J]. Information Sciences, 2022, 592: 402-416.
doi: 10.1016/j.ins.2022.01.036 URL |
[20] | HAN Xiaohong, ZHAO Mengfan, ZHANG Yutao. Joint Heterogeneous Graph Convolutional Network and Attention Mechanism for Fake News[EB/OL]. (2022-11-28)[2023-12-01]. https://doi.org/10.20009/j.cnki.21-1106/TP.2022-0412. |
韩晓鸿, 赵梦凡, 张钰涛. 联合异质图卷积网络和注意力机制的假新闻检测[EB/OL]. (2022-11-28)[2023-12-01]. https://doi.org/10.20009/j.cnki.21-1106/TP.2022-0412. | |
[21] |
BAZMI P, ASADPOUR M, SHAKERY A. Multi-View Co-Attention Network for Fake News Detection by Modeling Topic-Specific User and News Source Credibility[J]. Information Processing and Management, 2023, 60(1): 103146.
doi: 10.1016/j.ipm.2022.103146 URL |
[22] | YING Qichao, HU Xiaoxiao, ZHOU Yangming, et al. Bootstrapping Multi-View Representations for Fake News Detection[C]// AAAI. The 37th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2023, 37(4): 5384-5392. |
[23] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[C]// IEEE. The 3th International Conference on Learning Representations. New York: IEEE, 2015: 730-734. |
[24] | LU Jiasen, BATRA D, PARIKH D, et al. ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks[C]// ACM. The 33nd International Conference on Neural Information Processing Systems. New York: ACM, 2019: 13-23. |
[25] | KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks[C]// IEEE. The 5th International Conference on Learning Representations. New York: IEEE, 2017: 11305-11312. |
[26] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[EB/OL]. (2017-10-30)[2023-12-01]. https://arxiv.org/abs/1710.10903. |
[27] |
SINGH J P, KUMAR A, RANA N P, et al. Attention-Based LSTM Network for Rumor Veracity Estimation of Tweets[J]. Information Systems Frontiers, 2022, 24(2): 459-474.
doi: 10.1007/s10796-020-10040-5 |
[28] | KIM Y. Convolutional Neural Networks for Sentence Classification[C]// ACL. 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746 -1751. |
[29] |
LIU Xiaoyang, ZHAO Zhengyang, ZHANG Yihao, et al. Social Network Rumor Detection Method Combining Dual-Attention Mechanism with Graph Convolutional Network[J]. IEEE Transactions on Computational Social Systems, 2023, 10(5): 2350-2361.
doi: 10.1109/TCSS.2022.3184745 URL |
[30] |
BAI Lin, HAN Xueming, JIA Caiyan. A Rumor Detection Model Incorporating Propagation Path Contextual Semantics and User Information[J]. Neural Processing Letters, 2023, 55(7): 9831-9850.
doi: 10.1007/s11063-023-11229-w |
[1] | 杨志鹏, 刘代东, 袁军翼, 魏松杰. 基于自注意力机制的网络局域安全态势融合方法研究[J]. 信息网络安全, 2024, 24(3): 398-410. |
[2] | 江魁, 卢橹帆, 苏耀阳, 聂伟. 基于Attention-GRU的SHDoS攻击检测研究[J]. 信息网络安全, 2024, 24(3): 427-437. |
[3] | 孙红哲, 王坚, 王鹏, 安雨龙. 基于Attention-BiTCN的网络入侵检测方法[J]. 信息网络安全, 2024, 24(2): 309-318. |
[4] | 余尚戎, 肖景博, 殷琪林, 卢伟. 关注社交异配性的社交机器人检测框架[J]. 信息网络安全, 2024, 24(2): 319-327. |
[5] | 秦中元, 马楠, 余亚聪, 陈立全. 基于双重图神经网络和自编码器的网络异常检测[J]. 信息网络安全, 2023, 23(9): 1-11. |
[6] | 刘刚, 杨雯莉, 王同礼, 李阳. 基于云联邦的差分隐私保护动态推荐模型[J]. 信息网络安全, 2023, 23(7): 31-43. |
[7] | 蒋英肇, 陈雷, 闫巧. 基于双通道特征融合的分布式拒绝服务攻击检测算法[J]. 信息网络安全, 2023, 23(7): 86-97. |
[8] | 李季瑀, 付章杰, 张玉斌. 一种基于跨域对抗适应的图像信息隐藏算法[J]. 信息网络安全, 2023, 23(1): 93-102. |
[9] | 张光华, 刘永升, 王鹤, 于乃文. 基于BiLSTM和注意力机制的智能合约漏洞检测方案[J]. 信息网络安全, 2022, 22(9): 46-54. |
[10] | 张光华, 闫风如, 张冬雯, 刘雪峰. 基于LSTM-Attention的内部威胁检测模型[J]. 信息网络安全, 2022, 22(2): 1-10. |
[11] | 仝鑫, 金波, 王靖亚, 杨莹. 一种面向Android恶意软件的多视角多任务学习检测方法[J]. 信息网络安全, 2022, 22(10): 1-7. |
[12] | 朱丽娜, 马铭芮, 朱东昭. 基于图神经网络和通用漏洞分析框架的C类语言漏洞检测方法[J]. 信息网络安全, 2022, 22(10): 59-68. |
[13] | 石拓, 梁飞, 尚钢川, 田洋俊. 基于时序交易图注意力神经网络的以太坊恶意账户检测[J]. 信息网络安全, 2022, 22(10): 69-75. |
[14] | 刘烁, 张兴兰. 基于双重注意力的入侵检测系统[J]. 信息网络安全, 2022, 22(1): 80-86. |
[15] | 秦中元, 胡宁, 方兰婷. 基于免疫仿生机理和图神经网络的网络异常检测方法[J]. 信息网络安全, 2021, 21(8): 10-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||