信息网络安全 ›› 2024, Vol. 24 ›› Issue (11): 1643-1654.doi: 10.3969/j.issn.1671-1122.2024.11.004
收稿日期:
2024-08-10
出版日期:
2024-11-10
发布日期:
2024-11-21
通讯作者:
兰浩良 作者简介:
兰浩良(1986—),男,山东,讲师,博士,主要研究方向为网络安全|王群(1971—),男,甘肃,教授,博士,CCF杰出会员,主要研究方向为网络空间安全|徐杰(1989—),男,江苏,讲师,博士,主要研究方向为网络测量与行为学|薛益时(1990—),男,江苏,讲师,博士,主要研究方向为网络舆情|张勃(1984—),男,新疆,本科,主要研究方向为情报学
基金资助:
LAN Haoliang1(), WANG Qun1, XU Jie1, XUE Yishi1, ZHANG Bo2
Received:
2024-08-10
Online:
2024-11-10
Published:
2024-11-21
摘要:
基于区块链的联邦学习作为一种新兴的去中心化的分布式机器学习新范式,其在克服传统联邦学习所面临的数据孤岛、隐私泄露以及安全威胁等不足的同时,也面临着区块链技术在成本、效率以及有效性等方面带来的新挑战。为此,文章首先结合基本原理、技术分类、优势以及待解决问题对联邦学习和区块链进行阐述。在此基础上,文章围绕联邦学习与区块链所涉及的架构、性能、隐私性、安全性、激励机制、共识机制等对基于区块链的联邦学习研究进行了系统的总结分析。最后,文章从基于区块链的联邦学习原理、平衡性以及应用三个维度,探讨未来的研究趋势和亟待解决的主要问题。
中图分类号:
兰浩良, 王群, 徐杰, 薛益时, 张勃. 基于区块链的联邦学习研究综述[J]. 信息网络安全, 2024, 24(11): 1643-1654.
LAN Haoliang, WANG Qun, XU Jie, XUE Yishi, ZHANG Bo. Review of Research on Blockchain-Based Federated Learning[J]. Netinfo Security, 2024, 24(11): 1643-1654.
表2
BFL常见的安全威胁与防御
序号 | 攻击方式 | 主要特点 | 防御手段 | 文献(近5年) |
---|---|---|---|---|
1 | 单点故障 | 影响模型聚合、消耗大量资源 | 错误率、损失函数、节点共识 | [ |
2 | 拒绝服务 | 瘫痪中央服务器或整个系统 | 拜占庭共识、知识图谱、知识库 | [ |
3 | 搭便车 | 影响效率、有效性、公平性 | 审查、异常值检测、高斯混合模型 | [ |
4 | 投毒 | 影响训练和聚合的准确性 | 交叉检测、节点选择、梯度选择 | [ |
5 | 中间人 | 欺骗会话双方、劫持会话信息 | 签名、临时聚合器、安全通道 | [ |
6 | 窃听 | 导致敏感信息泄露或网络中断 | 梯度稀疏、差分隐私、同态加密 | [ |
7 | 后门 | 操纵模型在特定输入下的输出 | 对比训练、范数阈值、触发器 | [ |
表3
BFL相关共识机制比较
序号 | 共识机制 | 能耗 | 优势 | 不足 |
---|---|---|---|---|
1 | PoW | 高 | 去中心化度、节点进出、安全性、扩展性 | 资源消耗、共识周期 |
2 | PoS | 适中 | 资源消耗、共识速度、 块生成效率 | 中心化、实现、安全性 |
3 | DPoW | 低 | 安全性、共识速度、 验证和记账节点 | 去中心化度、效率 |
4 | DPoS | 低 | 验证和记账节点、共识速度、资源消耗 | 公平性差、依赖令牌 |
5 | Pbft | 低 | 资源消耗、吞吐量、 共识效率、交易频次 | 复杂度、扩展性、 节点数 |
6 | Paxos | 低 | 性能、资源消耗、 代币需求 | 容错性、实现 |
7 | Raft | 低 | 资源消耗、共识效率、 可用性、一致性 | 容错性 |
8 | Pool | 适中 | 代币需求、共识速度 | 去中心化度 |
9 | CoPC | 低 | 共识效率、考虑贡献度、隐私性 | 复杂度、效率 |
10 | PF-PoFL | 高 | 性能、隐私性、安全性 | 资源消耗、共识周期 |
11 | PoQ | 低 | 数据共享相率、 资源利用率 | 隐私性、安全性 |
表4
BFL的常见应用
序号 | 应用领域 | 主要优势 | 文献(近5年) |
---|---|---|---|
1 | 医疗健康 | 数据安全、可信共享、可审计性、激励机制 | [ |
2 | 物联网 | 准确性、安全性、隐私性、 有效性 | [ |
3 | 车联网 | 隐私性、安全性、数据采集、 通信效率 | [ |
4 | 无人机 | 有效性、安全性、隐私性 | [ |
5 | 智能运输 | 安全性、隐私性、运输效率 | [ |
6 | 5G&6G | 可靠性、安全性、通信效率、 准确性 | [ |
7 | 边缘计算 | 带宽优化、隐私保护、通信效率 | [ |
8 | 雾计算 | 高效率、安全性、隐私性 | [ |
9 | 认知计算 | 可验证性、快速收敛 | [ |
[1] | QU Youyang, UDDIN M P, GAN Chenquan, et al. Blockchain-Enabled Federated Learning: A Survey[J]. ACM Computing Surveys, 2022, 55(4): 1-35. |
[2] |
SUN Rui, LI Chao, WANG Wei, et al. Research Progress of Blockchain-Based Federated Learning[J]. Journal of Computer Applications, 2022, 42(11): 3413-3420.
doi: 10.11772/j.issn.1001-9081.2021111934 |
孙睿, 李超, 王伟, 等. 基于区块链的联邦学习研究进展[J]. 计算机应用, 2022, 42(11): 3413-3420.
doi: 10.11772/j.issn.1001-9081.2021111934 |
|
[3] | MOTHUKURI V, PARIZI R M, POURIYEH S, et al. A Survey on Security and Privacy of Federated Learning[J]. Future Generation Computer Systems, 2021, 115: 619-640. |
[4] | KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and Open Problems in Federated Learning[J]. Foundations and Trends in Machine Learning, 2021, 14(1-2): 1-21. |
[5] | YUAN Yong, WANG Feiyue. Blockchain: The State of the Art and Future Trends[J]. Acta Automatica Sinica, 2016, 42(4): 481-494. |
袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4): 481-494. | |
[6] | TAN Pengliu, XU Teng, YANG Sijia, et al. Review of Research on Blockchain Privacy Protection Technologies[J]. Application Research of Computers, 2024, 41(8): 2261-2269. |
谭朋柳, 徐滕, 杨思佳, 等. 区块链隐私保护技术研究综述[J]. 计算机应用研究, 2024, 41(8): 2261-2269. | |
[7] | QIAO Shaojie, LIN Yufeng, HAN Nan, et al. Decentralized Federated Learning Framework Based on Proof-of-Contribution Consensus Mechanism[J]. Journal of Software, 2023, 34(3): 1148-1167. |
乔少杰, 林羽丰, 韩楠, 等. 基于贡献度证明共识机制的去中心化联邦学习框架[J]. 软件学报, 2023, 34(3): 1148-1167. | |
[8] | ZHU Jianming, ZHANG Qinnan, GAO Sheng, et al. Privacy Preserving and Trustworthy Federated Learning Model Based on Blockchain[J]. Chinese Journal of Computers, 2021, 44(12): 2464-2484. |
朱建明, 张沁楠, 高胜, 等. 基于区块链的隐私保护可信联邦学习模型[J]. 计算机学报, 2021, 44(12): 2464-2484. | |
[9] | ZHOU Wei, WANG Chao, XU Jian, et al. Privacy-Preserving and Decentralized Federated Learning Model Based on the Blockchain[J]. Journal of Computer Research and Development, 2022, 59(11): 2423-2436. |
周炜, 王超, 徐剑, 等. 基于区块链的隐私保护去中心化联邦学习模型[J]. 计算机研究与发展, 2022, 59(11): 2423-2436. | |
[10] | LI Yuzheng, CHEN Chuan, LIU Nan, et al. A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus[J]. IEEE Network, 2020, 35(1): 234-241. |
[11] | NGUYEN D C, DING Ming, PHAM Q V, et al. Federated Learning Meets Blockchain in Edge Computing: Opportunities and Challenges[J]. IEEE Internet of Things, 2021, 8(16): 12806-12825. |
[12] | HUANG Xiaoke, DENG Xuesong, CHEN Qianbin, et al. Asynchronous Federated Learning via Blockchain in Edge Computing Networks[J]. Journal of Electronics & Information Technology, 2024, 46(1): 195-203. |
黄晓舸, 邓雪松, 陈前斌, 等. 边缘计算网络中区块链赋能的异步联邦学习算法[J]. 电子与信息学报, 2024, 46(1): 195-203. | |
[13] | WANG Weilong, WANG Yingjie, HUANG Yan, et al. Privacy Protection Federated Learning System Based on Blockchain and Edge Computing in Mobile Crowdsourcing[EB/OL]. (2022-10-09)[2024-05-30]. https://doi.org/10.1016/j.comnet.2022.109206. |
[14] | KIM Y J, HONG C S. Blockchain-Based Node-Aware Dynamic Weighting Methods for Improving Federated Learning Performance[C]//IEEE. 20th Asia-Pacific Network Operations and Management Symposium. New York: IEEE, 2019: 1-4. |
[15] | HIEU N Q, TRAN T A, NGUYEN C L, et al. Deep Reinforcement Learning for Resource Management in Blockchain-Enabled Federated Learning Network[J]. IEEE Networking Letters, 2022, 4(3): 137-141. |
[16] | ZHANG Jiaxiang, LIU Yiming, QIN Xiaoqi, et al. Adaptive Resource Allocation for Blockchain-Based Federated Learning in Internet of Things[J]. IEEE Internet of Things Journal, 2023, 10(12): 10621-10635. |
[17] | ZHANG Baochen, HUANG Yue, KONG Lanju, et al. A Trustworthy and Fair Blockchain Framework Supporting Adaptive Federated Learning Task[J]. Journal of Computer Research and Development, 2023, 60(11): 2504-2519. |
张宝晨, 黄月, 孔兰菊, 等. 一种支持自适应联邦学习任务的可信公平区块链框架[J]. 计算机研究与发展, 2023, 60(11): 2504-2519. | |
[18] | HAN Xuan, YUAN Yong, WANG Feiyue. Security Problems on Blockchain: The State of the Art and Future Trends[J]. Acta Automatica Sinica, 2019, 45(1): 206-225. |
韩璇, 袁勇, 王飞跃. 区块链安全问题:研究现状与展望[J]. 自动化学报, 2019, 45(1): 206-225. | |
[19] | LIU Aodi, DU Xuehui, WANG Na, et al. Research Progress on Blockchain System Security Technology[J]. Chinese Journal of Computers, 2024, 47(3): 608-646. |
刘敖迪, 杜学绘, 王娜, 等. 区块链系统安全防护技术研究进展[J]. 计算机学报, 2024, 47(3): 608-646. | |
[20] | MOUDOUD H, CHERKAOUI S, KHOUKHI L. Towards a Secure and Reliable Federated Learning Using Blockchain[C]//IEEE. Global Communications Conferenc. New York: IEEE, 2021: 1-6. |
[21] |
LI Zonghang, YU Hongfang, ZHOU Tianyao, et al. Byzantine Resistant Secure Blockchained Federated Learning at The Edge[J]. IEEE Network, 2021, 35(4): 295-301.
doi: 10.1109/MNET.011.2000604 |
[22] | MA Chuan, LI Jun, SHI Long, et al. When Federated Learning Meets Blockchain: A New Distributed Learning Paradigm[J]. IEEE Computational Intelligence Magazine, 2022, 17(3): 26-33. |
[23] | YU Feng, LIN Hui, WANG Xiaoding, et al. Blockchain-Empowered Secure Federated Learning System: Architecture and Applications[J]. Computer Communications, 2022, 196: 55-65. |
[24] | WANG Jinpeng, DAI Huan, LI Kaicheng, et al. Trustworthy Federated Learning Method Based on Consortium Blockchain[J]. Computer Engineering and Design, 2023, 44(12): 3545-3553. |
王金鹏, 戴欢, 李凯程, 等. 基于联盟链的可信联邦学习方法[J]. 计算机工程与设计, 2023, 44(12): 3545-3553. | |
[25] | LUO Fulin, CHEN Yunfang, CHEN Xu, et al. Federated Learning Model Aggregation Scheme Based on Blockchain[J]. Application Research of Computers, 2024, 41(8): 2277-2283. |
罗福林, 陈云芳, 陈序, 等. 基于区块链的联邦学习模型聚合方案[J]. 计算机应用研究, 2024, 41(8): 2277-2283. | |
[26] | LI Kun, ZHOU Huachun, TU Zhe, et al. Blockchain Empowered Federated Learning for Distributed Network Security Behaviour Knowledge Base in 6G[EB/OL]. (2022-01-01)[2024-04-30]. https://doi.org/10.1155/2022/4233238. |
[27] | WANG Kaiqi, HONG Ruiqi, MAO Yunlong, et al. Secure Solution for Decentralized Federated Learning with Blockchain[J]. Scientia Sinica Informationis, 2024, 54(2): 316-334. |
王恺祺, 洪睿琦, 毛云龙, 等. 基于区块链构建安全去中心化的联邦学习方案[J]. 中国科学, 2024, 54(2): 316-334. | |
[28] | FRABONI Y, VIDAL R, LORENZI M. Free-Rider Attacks on Model Aggregation in Federated Learning[C]//PMLR. International Conference on Artificial Intelligence and Statistics. New York: PMLR, 2021: 1846-1854. |
[29] | WANG Bo, LI Hongtao, LIU Ximeng, et al. FRAD: Free-Rider Attacks Detection Mechanism for Federated Learning in Aiot[J], IEEE Internet of Things, 2024, 11(3): 4377-4388. |
[30] |
CHEN Wanzhen, ZHANG En, QIN Leiyong, et al. Privacy-Preserving Federated Learning Algorithm Based on Blockchain in Edge Computing[J]. Journal of Computer Applications, 2023, 43(7): 2209-2216.
doi: 10.11772/j.issn.1001-9081.2022060909 |
陈宛桢, 张恩, 秦磊勇, 等. 边缘计算下基于区块链的隐私保护联邦学习算法[J]. 计算机应用, 2023, 43(7): 2209-2216.
doi: 10.11772/j.issn.1001-9081.2022060909 |
|
[31] | SHORT A R, LELIGOU H C, PAPOUTSIDAKIS M, et al. Using Blockchain Technologies to Improve Security in Federated Learning Systems[C]//IEEE. 44th Annual Computers, Software, and Applications Conference. New York: IEEE, 2020: 1183-1188. |
[32] | RAHMAN M A, HOSSAIN M S, ISLAM M S, et al. Secure and Provenance Enhanced Internet of Health Things Framework: A Blockchain Managed Federated Learning Approach[J]. IEEE Access, 2020, 8: 205071-205087. |
[33] | WEN Jie, ZHANG Zhixia, LAN Yang, et al. A Survey on Federated Learning: Challenges and Applications[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 513-535. |
[34] | ALGHAMDI A, ZHU Jiang, YIN Guocai, et al. Blockchain Empowered Federated Learning Ecosystem for Securing Consumer IoT Features Analysis[EB/OL]. (2022-09-08)[2024-04-30]. https://doi.org/10.3390/s22186786. |
[35] | LIU Yi, PENG Jialiang, KANG Jiawen, et al. A Secure Federated Learning Framework for 5G Networks[J]. IEEE Wireless Communications, 2020, 27(4): 24-31. |
[36] | KUMAR S, DUTTA S, CHATTURVEDI S, et al. Strategies for Enhancing Training and Privacy in Blockchain Enabled Federated Learning[C]//IEEE. 6th International Conference on Multimedia Big Data. New York: IEEE, 2020: 333-340. |
[37] |
ZHANG Jiale, ZHU Chengcheng, CHENG Xiang, et al. Backdoor Defense Method in Federated Learning Based on Contrastive Training[J]. Journal on Communications, 2024, 45(3): 182-196.
doi: 10.11959/j.issn.1000-436x.2024063 |
张佳乐, 朱诚诚, 成翔, 等. 基于对比训练的联邦学习后门防御方法[J]. 通信学报, 2024, 45(3): 182-196.
doi: 10.11959/j.issn.1000-436x.2024063 |
|
[38] | LIN Yihang, ZHOU Pengyuan, WU Zhiqian, et al. Federated Learning Backdoor Defense Method Based on Trigger Inversion[J]. Netinfo Security, 2024, 24(2): 262-271. |
林怡航, 周鹏远, 吴治谦, 等. 基于触发器逆向的联邦学习后门防御方法[J]. 信息网络安全, 2024, 24(2): 262-271. | |
[39] | LIU Wei, TANG Zongke, MA Jie, et al. A Federated Learning Model for Privacy Protection Based on Blockchain and Dynamic Evaluation[J]. Journal of Computer Research and Development, 2023, 60(11): 2583-2593. |
刘炜, 唐琮轲, 马杰, 等. 基于区块链和动态评估的隐私保护联邦学习模型[J]. 计算机研究与发展, 2023, 60(11): 2583-2593. | |
[40] | QI Yuanhang, HOSSAIN M S, NIE Jiangtian, et al. Privacy-Preserving Blockchain-Based Federated Learning for Traffic Flow Prediction[J]. Future Generation Computer Systems, 2021, 117: 328-337. |
[41] | AWAN S, LI Fengjun, LUO Bo, et al. Poster: A Reliable and Accountable Privacy-Preserving Federated Learning Framework Using the Blockchain[C]// ACM. SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 2561-2563. |
[42] | QIN Zhenquan, YE Jin, MENG Jie, et al. Privacy-Preserving Blockchain-Based Federated Learning for Marine Internet of Things[J]. IEEE Transactions on Computational Social Systems, 2021, 9(1): 159-173. |
[43] | TOYODA K, ZHAO Jun, ZANG A N S, et al. Blockchain-Enabled Federated Learning with Mechanism Design[J]. IEEE Access, 2020, 8: 219744-219756. |
[44] | WANG Zexin, YAN Biwei, DONG Anming. Blockchain Empowered Federated Learning for Data Sharing Incentive Mechanism[J]. Procedia Computer Science, 2022, 202: 348-353. |
[45] | WANG Zhilin, HU Qin, LI Ruinian, et al. Incentive Mechanism Design for Joint Resource Allocation in Blockchain-Based Federated Learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(5): 1536-1547. |
[46] | EYAL I, GENCER A E, SIRER E G, et al. Bitcoin-NG: A Scalable Blockchain Protocol[C]//USENIX. 13th Symposium on Networked Systems Design and Implementation. Berkeley: USENIX, 2016: 45-59. |
[47] |
KANG Jiawen, XIONG Zhehui, NIYATO D, et al. Incentive Mechanism for Reliable Federated Learning: A Joint Optimization Approach to Combining Reputation and Contract Theory[J]. IEEE Internet of Things Journal, 2019, 6(6): 10700-10714.
doi: 10.1109/JIOT.2019.2940820 |
[48] | POKHREL S R, CHOI J. Federated Learning with Blockchain for Autonomous Vehicles: Analysis and Design Challenges[J]. IEEE Transactions on Communications, 2020, 68(8): 4734-4746. |
[49] | WANG Yuntao, PENG Haixia, SU Zhou, et al. A Platform-Free Proof of Federated Learning Consensus Mechanism for Sustainable Blockchains[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3305-3324. |
[50] | LU Yunlong, HUANG Xiaohong, DAI Yueyue, et al. Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2019, 16(6): 4177-4186. |
[51] | CUI Teng, ZHANG Haijun, DAI Wei. Federated Incremental Transfer Learning Based on Distributed Consensus[J]. Chinese Journal of Computers, 2024, 47(4): 821-841. |
崔腾, 张海军, 代伟. 基于分布共识的联邦增量迁移学习[J]. 计算机学报, 2024, 47(4): 821-841. | |
[52] | MYRZASHOVA R, ALSAMHI S H, SHVETSOV A V, et al. Blockchain Meets Federated Learning in Healthcare: A Systematic Review with Challenges and Opportunities[J]. IEEE Internet of Things, 2023, 10(16): 14418-14437. |
[53] | SINGH S, RATHORE S, ALFARRAJ O, et al. A Framework for Privacy-Preservation of IoT Healthcare Data Using Federated Learning and Blockchain Technology[J]. Future Generation Computer Systems, 2022, 129: 380-388. |
[54] | AICH S, SINAI N K, KUMAR S, et al. Protecting Personal Healthcare Record Using Blockchain & Federated Learning Technologies[C]// IEEE. 24th International Conference on Advanced Communication Technology. New York: IEEE, 2022: 109-112. |
[55] | CHANG Yuxia, FANG Chen, SUN Wenzhou. A Blockchain-Based Federated Learning Method for Smart Healthcare[EB/OL]. (2021-11-24) [2024-04-30]. https://doi.org/10.1155/2021/4376418. |
[56] | LIU Yuan, YU Wangyuan, AI Zhengpeng, et al. A Blockchain-Empowered Federated Learning in Healthcare-Based Cyber Physical Systems[J]. IEEE Transactions on Network Science and Engineering, 2022, 10(5): 2685-2696. |
[57] | ZHAO Yang, ZHAO Jun, JIANG Linshan, et al. Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices[J]. IEEE Internet of Things Journal, 2020, 8(3): 1817-1829. |
[58] | ISSA W, MOUSTAFA N, TURNBULL B, et al. Blockchain-Based Federated Learning for Securing Internet of Things: A Comprehensive Survey[J]. ACM Computing Surveys, 2023, 55(9): 1-43. |
[59] | YANG Ruizhe, ZHAO Tonghui, YU F R, et al. Blockchain-Based Federated Learning with Enhanced Privacy and Security Using Homomorphic Encryption and Reputation[J]. IEEE Internet of Things, 2024, 11(12): 21674-21688. |
[60] | JAVED A R, HASSAN M A, SHAHZAD F, et al. Integration of Blockchain Technology and Federated Learning in Vehicular (iot) Networks: A Comprehensive Survey[EB/OL]. (2022-06-10)[2024-04-30]. https://doi.org/10.3390/s22124394. |
[61] | OTOUM S, RIDHAWI I, MOUFTAH H T. Blockchain-Supported Federated Learning for Trustworthy Vehicular Networks[C]//IEEE. Global Communications Conference. New York: IEEE, 2020: 1-6. |
[62] | MALIK J A. Next-Generation Protection: Leveraging Federated Learning and Blockchain for Intrusion Detection in Smart Vehicle Network[J]. Power System Technology, 2024, 48(1): 931-952. |
[63] | ASAD M, SHAUKAT S, JAVANMARDI E, et al. Secure and Efficient Blockchain-Based Federated Learning Approach for VANETs[J]. IEEE Internet of Things, 2023, 11(5): 9047-9055. |
[64] | FENG Chaosheng, LIU Bin, YU Keping, et al. Blockchain-Empowered Decentralized Horizontal Federated Learning for 5G-Enabled UAVs[J]. IEEE Transactions on Industrial Informatics, 2021, 18(5): 3582-3592. |
[65] | ABUNADI I, ALTHOBAITI M M, AL-WESABI F N, et al. Federated Learning with Blockchain Assisted Image Classification for Clustered UAV Networks[J]. Computers, Materials & Continua, 2022, 72: 1195-1212. |
[66] | ABDEL B M, MOUSTAFA N, HAWASH H, et al. Federated Intrusion Detection in Blockchain-Based Smart Transportation Systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(3): 2523-2537. |
[67] | MOULAHI T, JABBAR R, ALABDULATIF A, et al. Privacy-Preserving Federated Learning Cyber-Threat Detection for Intelligent Transport Systems with Blockchain-Based Security[J]. (2022-07-24)[2024-04-30]. https://doi.org/10.1111/exsy.13103. |
[68] | POKHREL S R. Federated Learning Meets Blockchain at 6G Edge: A Drone-Assisted Networking for Disaster Response[C]// ACM. 2nd MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond. New York: ACM, 2020: 49-54. |
[69] | PRIYA J C, NANTHAKUMAR G, CHOUDHURY T, et al. 6G-DeFLI: Enhanced Quality-of-Services Using Distributed Hash Table and Blockchain-Enabled Federated Learning Approach in 6G IoT Networks[J]. Wireless Networks, 2024, 5: 1-15. |
[70] | SARASWAT D, VERMA A, BHATTACHARYA P, et al. Blockchain-Based Federated Learning in UAVs Beyond 5G Networks: A Solution Taxonomy and Future Directions[J]. IEEE Access, 2022, 10: 33154-33182. |
[71] | NGUYEN D C, HOSSEINALIPOUR S, LOVE D J, et al. Latency Optimization for Blockchain-Empowered Federated Learning in Multi-Server Edge Computing[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3373-3390. |
[72] | FAN Sizheng, ZHANG Hongbo, ZENG Yuchen, et al. Hybrid Blockchain-Based Resource Trading System for Federated Learning in Edge Computing[J]. IEEE Internet of Things, 2020, 8(4): 2252-2264. |
[73] | NGUYEN T A, KALIAPPAN V K, JEON S, et al. Blockchain Empowered Federated Learning with Edge Computing for Digital Twin Systems in Urban Air Mobility[C]// Springer. Asia-Pacific International Symposium on Aerospace Technology. Heiderberg: Springer, 2021: 935-950. |
[74] | QU Youyang, GAO Longxiang, LUAN T H, et al. Decentralized Privacy Using Blockchain-Enabled Federated Learning in Fog Computing[J]. IEEE Internet of Things, 2020, 7(6): 5171-5183. |
[75] | BAUCAS M J, SPACHOS P, PLATANIOTIS K N. Federated Learning and Blockchain-Enabled Fog-IoT Platform for Wearables in Predictive Healthcare[J]. IEEE Transactions on Computational Social Systems, 2023, 10(4): 1732-1741. |
[76] | QU Youyang, POKHREL S R, GARG S, et al. A Blockchained Federated Learning Framework for Cognitive Computing in Industry 4.0 Networks[J]. IEEE Transactions on Industrial Informatics, 2020, 17(4): 2964-2973. |
[77] | KUMAR R, KHAN A A, KUMAR J, et al. Blockchain Federated Learning and Deep Learning Models for COVID-19 Detection Using CT Imaging[J]. IEEE Sensors Journal, 2021, 21(14): 16301-16314. |
[78] | REHMAN M H, SALAH K, DAMIANI E, et al. Towards Blockchain-based Reputation-Aware Federated Learning[C]//IEEE. Conference on Computer Communications Workshops. New York: IEEE, 2020: 183-188. |
[1] | 余礼苏, 李彪, 姚元志, 温家进, 黎子鹏, 王振. 区块链辅助无人机移动边缘计算系统的性能优化[J]. 信息网络安全, 2024, 24(9): 1432-1443. |
[2] | 郭倩, 赵津, 过弋. 基于分层聚类的个性化联邦学习隐私保护框架[J]. 信息网络安全, 2024, 24(8): 1196-1209. |
[3] | 吕秋云, 周凌飞, 任一支, 周士飞, 盛春杰. 一种全生命周期可控的公共数据共享方案[J]. 信息网络安全, 2024, 24(8): 1291-1305. |
[4] | 张继威, 王文俊, 牛少彰, 郭向阔. 区块链扩展解决方案:ZK-Rollup综述[J]. 信息网络安全, 2024, 24(7): 1027-1037. |
[5] | 郭瑞, 杨鑫, 王俊茗. 基于区块链的可验证可撤销属性加密方案[J]. 信息网络安全, 2024, 24(6): 863-878. |
[6] | 凌治, 杨明, 余江银. 基于IPFS和区块链技术的电力安全交易平台研究[J]. 信息网络安全, 2024, 24(6): 968-976. |
[7] | 田钊, 牛亚杰, 佘维, 刘炜. 面向车联网的车辆节点信誉评估方法[J]. 信息网络安全, 2024, 24(5): 719-731. |
[8] | 石润华, 杨婧怡, 王鹏博, 刘华伟. V2G中基于区块链的在线/离线跨域身份认证方案[J]. 信息网络安全, 2024, 24(4): 587-601. |
[9] | 胡海洋, 刘畅, 王栋, 魏旭. 基于区块链的清洁能源数据溯源机制[J]. 信息网络安全, 2024, 24(4): 626-639. |
[10] | 戚晗, 王敬童, 拱长青. 基于随机量子层的变分量子卷积神经网络鲁棒性研究[J]. 信息网络安全, 2024, 24(3): 363-373. |
[11] | 薛茗竹, 胡亮, 王明, 王峰. 基于联邦学习和区块链技术的TAP规则处理系统[J]. 信息网络安全, 2024, 24(3): 473-485. |
[12] | 冯光升, 蒋舜鹏, 胡先浪, 马明宇. 面向物联网的入侵检测技术研究新进展[J]. 信息网络安全, 2024, 24(2): 167-178. |
[13] | 翟鹏, 何泾沙, 张昱. 物联网环境下基于SM9算法和区块链技术的身份认证方法[J]. 信息网络安全, 2024, 24(2): 179-187. |
[14] | 何业锋, 权家辉, 刘妍. 基于混合区块链的位置隐私保护方案[J]. 信息网络安全, 2024, 24(2): 229-238. |
[15] | 林怡航, 周鹏远, 吴治谦, 廖勇. 基于触发器逆向的联邦学习后门防御方法[J]. 信息网络安全, 2024, 24(2): 262-271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||