信息网络安全 ›› 2023, Vol. 23 ›› Issue (11): 94-103.doi: 10.3969/j.issn.1671-1122.2023.11.010

• 技术研究 • 上一篇    下一篇

基于代价敏感学习的物联网异常检测模型

廖丽云, 张伯雷, 吴礼发()   

  1. 南京邮电大学计算机学院,南京 210023
  • 收稿日期:2023-08-10 出版日期:2023-11-10 发布日期:2023-11-10
  • 通讯作者: 吴礼发 wulifa@njupt.edu.cn
  • 作者简介:廖丽云(1997—),女,海南,硕士研究生,主要研究方向为物联网安全|张伯雷(1988—),男,陕西,讲师,博士,CCF会员,主要研究方向为数据挖掘与机器学习|吴礼发(1968—),男,湖北,教授,博士,主要研究方向为网络安全与软件安全
  • 基金资助:
    国家自然科学基金(62202238);国家重点研发计划(2019YFB2101704)

IoT Anomaly Detection Model Based on Cost-Sensitive Learning

LIAO Liyun, ZHANG Bolei, WU Lifa()   

  1. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • Received:2023-08-10 Online:2023-11-10 Published:2023-11-10

摘要:

针对当前物联网异常检测算法中数据不平衡导致特征学习不全面,进而影响少数类攻击样本检测性能的问题,文章提出了一种基于代价敏感学习的物联网异常检测模型CS-CTIAD。该模型通过卷积神经网络和Transformer综合学习物联网流量的空间和时序特征,来缓解单一模型对少数类攻击样本特征学习不全面的问题;同时,在模型训练过程中引入代价敏感学习,动态调整少数类和多数类的损失权重,防止分类器因数据不平衡而忽略少数类攻击样本,进而提高少数类攻击样本的识别率。在CSE-CIC-IDS2018和IoT-23数据集上的测试结果表明,少数类攻击样本的检测性能得到明显提升。与现有工作相比,文章所提方法的整体评价指标(准确率、精确率、召回率和F1)更优。

关键词: 物联网, 异常检测, 深度学习, 代价敏感学习, 类不平衡

Abstract:

Aiming at the problem of data imbalance in current abnormal detection algorithms for Internet of Things (IoT), which leads to incomplete feature learning and subsequently affects the detection performance of minority class attack samples, this article proposed a cost-sensitive abnormal detection model for IoT, called CS-CTIAD. The model used convolutional neural networks and Transformers to comprehensively learn the spatial and temporal features of IoT traffic, alleviating the problem of incomplete feature learning of minority class attack samples by a single model; at the same time, cost sensitive learning was introduced in the model training process, dynamically adjusting the loss weights of minority and majority classes to prevent the classifier from ignoring minority class attack samples due to data imbalance, thus improving the recognition rate of minority class attack samples. The test results on the CSE-CIC-IDS2018 and IoT-23 datasets demonstrate a significant improvement in the detection performance of minority class attack samples. Compared with existing work, the proposed method achieves the best overall evaluation metrics (accuracy, precision, recall, F1).

Key words: internet of things, anomaly detection, deep learning, cost-sensitive, class imbalance

中图分类号: