信息网络安全 ›› 2025, Vol. 25 ›› Issue (5): 794-805.doi: 10.3969/j.issn.1671-1122.2025.05.011

• 理论研究 • 上一篇    下一篇

基于包长序列的恶意通信行为隐蔽变换方法研究

杨榉栋1,2,3, 陈兴蜀1,2,3(), 朱毅1,2,3   

  1. 1.四川大学网络空间安全学院,成都 610065
    2.数据安全防护与智能治理教育部重点实验室,成都 610065
    3.四川大学网络空间安全研究院,成都 610065
  • 收稿日期:2025-02-15 出版日期:2025-05-10 发布日期:2025-06-10
  • 通讯作者: 陈兴蜀 chenxsh@scu.edu.cn
  • 作者简介:杨榉栋(2000—),男,四川,硕士研究生,主要研究方向为网络安全|陈兴蜀(1968—),女,贵州,教授,博士,主要研究方向为云计算安全、数据安全、威胁检测、开源情报和人工智能安全|朱毅(1991—),男,四川,博士研究生,主要研究方向为网络行为与威胁识别
  • 基金资助:
    四川省自然科学基金(2024NSFSC1450);中央高校基础研究基金(SCU2024D01);中央高校基础研究基金(2023SCU12126);四川大学理工科发展计划(2020SCUNG129)

Research on Covert Transformation Method for Malicious Communication Behavior Based on Packet Length Sequence

YANG Judong1,2,3, CHEN Xingshu1,2,3(), ZHU Yi1,2,3   

  1. 1. School of Cyber Science and Engineering, Sichuan University, Chengdu 610065, China
    2. Key Laboratory of Data Protection and Intelligent Management, Ministry of Education, Chengdu 610065, China
    3. Cyber Science Research Institute, Sichuan University, Chengdu 610065, China
  • Received:2025-02-15 Online:2025-05-10 Published:2025-06-10

摘要:

为了向网络入侵检测系统(NIDS)提供变种恶意流量以评估检测模型的能力,文章针对恶意通信行为隐蔽变换方法开展研究。首先,文章通过包长序列刻画流量通信行为,包长序列的改变能够指导恶意流量在数据层面的变换以得到真实可用的变种恶意流量,进而影响数据包长度的相关统计特征以干扰NIDS检测结果;然后,基于包长序列设计了一种恶意通信行为隐蔽变换方法,该方法选择与待变换恶意流量在包长序列属性上最相似的正常流量作为参考流量,并通过TCP载荷填充和分段两种策略调整恶意流量中数据包的大小,使变种恶意流量的包长序列与正常流量相似,从而实现变种恶意流量对正常流量通信行为的模拟;最后,基于DoH-Brw数据集和CIC-AAGM数据集构建测试数据集,实验结果表明,基于DoH-Brw数据集生成的变种恶意流量在6种NIDS上的检出率平均下降超过 60%,基于CIC-AAGM数据集在4种NIDS上的检出率平均下降超过30%,有效证明了该方法的有效性。

关键词: 网络攻击, 流量混淆, 恶意流量

Abstract:

To supply variant malicious traffic to network intrusion detection systems (NIDS) for evaluating detection models, this paper investigated a concealment transformation method for malicious communication behavior. First, the paper characterized traffic via packet-length sequences; by modifying these sequences, one can guide data-level transformations of malicious traffic to produce realistic and usable variants, thereby altering packet-length-related statistical features to interfere with NIDS detection. Next, based on packetlength sequences, this paper designed a concealment transformation method which selected, as reference traffic, the normal flow whose packetlength sequence most closely matches that of the malicious flow to be transformed, and then apply two strategies—TCP payload padding and segmentation—to adjust the packet sizes in the malicious flow so that its packetlength sequence resembles that of normal traffic, effectively mimicking normal communication behavior. Finally, this paper constructed test datasets using the DoH-Brw and CIC-AAGM datasets. Experimental results show that the variant malicious traffic generated from DoH-Brw achieves an average detection-rate reduction of over 60% across six NIDS, and variants based on CIC-AAGM yield an average reduction of over 30% across four NIDS, thereby demonstrating the effectiveness of proposed method.

Key words: network attacks, traffic obfuscation, malicious traffic

中图分类号: