信息网络安全 ›› 2025, Vol. 25 ›› Issue (4): 598-609.doi: 10.3969/j.issn.1671-1122.2025.04.008

• 专题论文:智能系统安全 • 上一篇    下一篇

基于本体与攻击—故障树的智能网联汽车功能安全和网络安全联合分析评估方法

王舜, 邱菡(), 何英   

  1. 信息工程大学网络空间安全学院,郑州 450001
  • 收稿日期:2025-02-04 出版日期:2025-04-10 发布日期:2025-04-25
  • 通讯作者: 邱菡 qiuhan410@aliyun.com
  • 作者简介:王舜(1999—),女,河南,硕士研究生,主要研究方向为网络安全模拟与评估、智能网联汽车安全|邱菡(1981—),女,湖北,教授,博士,主要研究方向为网络安全模拟与评估、域间路由安全|何英(1996—),女,贵州,硕士研究生,主要研究方向为网络安全评估
  • 基金资助:
    河南省自然科学基金(242300421415);河南省重大科技专项(221100240100)

A Safety and Security Co-Analysis and Assessment Method for Intelligent Connected Vehicles Based on Ontology and Attack-Fault Tree

WANG Shun, QIU Han(), HE Ying   

  1. Department of Cyberspace Security, University of Information Engineering, Zhengzhou 450001, China
  • Received:2025-02-04 Online:2025-04-10 Published:2025-04-25

摘要:

针对复杂网络物理系统中功能安全和网络安全的动态交互问题,现有S&S联合分析方法由于对组件层的攻击—故障交互作用分析深度与精度不足,难以全面识别综合风险场景并准确量化风险,导致后续风险缓解措施可能存在潜在矛盾,从而削弱综合风险评估的有效性。文章提出一种基于本体与攻击—故障树的智能网联汽车功能安全和网络安全联合分析评估方法(Onto-AFT),通过构建业务—功能—组件分层依赖关系的本体模型,规范化表征网络物理系统的宏观功能架构与微观组件交互逻辑。同时,利用Datalog语言设计系统的组件、功能、攻击和故障等要素的动态交互规则,实现攻击路径与故障传播路径的联合推理与失效风险量化。该方法将本体论的系统化知识表示能力与攻击—故障树的多逻辑门表达能力相结合,支持复杂交互场景(如攻击触发故障、冗余组件抑制失效)的失效路径推理,并融合通用漏洞评分系统的漏洞评分与故障率数据实现动态风险计算。在智能网联汽车自动紧急制动系统上进行实验,实验结果表明,与传统智能网联汽车联合分析评估方法相比,Onto-AFT在风险识别的全面性与量化精度上均有显著提升,同时具备规则动态更新的高扩展性。

关键词: 网络物理系统, 功能安全和网络安全, 本体论, 风险评估

Abstract:

For the dynamic interaction problem of safety and security in complex cyber-physical systems, the existing S&S co-analysis methods have insufficient depth and accuracy in analyzing the attack-fault interaction at the component level, making it difficult to comprehensively identify integrated risk scenarios and accurately quantify risks. This leads to potential contradictions in subsequent risk mitigation measures, thereby reducing the effectiveness of comprehensive risk assessment. This paper proposed a safety and security co-analysis and assessment method for intelligent connected vehicles based on ontology and attack-fault tree (Onto-AFT). By constructing an ontology model of the hierarchical dependency relationship between business, function, and component, it standardized the representation of the macroscopic functional architecture and microscopic component interaction logic of cyber-physical systems. Using the Datalog language, dynamic interaction rules for system components, functions, attacks, and faults were designed to achieve joint reasoning of attack paths and fault propagation paths and quantification of failure risks. This method combined the systematic knowledge representation ability of ontology with the multi-logic gate expression ability of attack-fault trees, supporting failure path reasoning in complex interaction scenarios (such as attacks triggering faults, redundant components suppressing failures), and integrating CVSS vulnerability scores and failure rate data to achieve dynamic risk calculation. Experimetation on the autonomous emergency braking system of intelligent connected vehicles, experiments prove that compared with traditional safety and security co-analysis and evaluation methods, Onto-AFT significantly improves the comprehensiveness of risk identification and quantification accuracy, and has high scalability with dynamic rule updates.

Key words: cyber-physical system, safety and security, ontology, risk assessment

中图分类号: