信息网络安全 ›› 2024, Vol. 24 ›› Issue (1): 106-112.doi: 10.3969/j.issn.1671-1122.2024.01.010
收稿日期:
2023-06-25
出版日期:
2024-01-10
发布日期:
2024-01-24
通讯作者:
郭艳琨
E-mail:dimple_guo@emails.bjut.edu.cn
作者简介:
张兴兰(1970—),女,山西,教授,博士,主要研究方向为密码和量子计算|郭艳琨(1998—),女,天津,硕士研究生,主要研究方向为对称密码和量子计算|陈菲(1999—),女,北京,硕士研究生,主要研究方向为量子密码|张丰(1998—),男,江西,硕士研究生,主要研究方向为量子机器学习
基金资助:
ZHANG Xinglan, GUO Yankun(), CHEN Fei, ZHANG Feng
Received:
2023-06-25
Online:
2024-01-10
Published:
2024-01-24
Contact:
GUO Yankun
E-mail:dimple_guo@emails.bjut.edu.cn
摘要:
文章基于量子Simon算法(一类经典量子周期寻找算法)的量子过程以及应用,对类EM结构进行基于量子Simon算法的密码分析,以类EM结构的加密算法为研究对象,运用量子Simon算法,构造适用于Simon算法的函数,对类EM加密结构的5轮加密过程进行密钥恢复攻击。结果显示,在密钥长度的多项式时间内,文章所提方法可以成功恢复出第五轮加密密钥,且根据此密钥可以分析出其他轮密钥。研究结果表明,在密钥长度的多项式时间内,可以找到其中一个密钥,量子条件下密钥的可恢复性说明该结构的安全轮数应当高于5轮,为未来对称密码体制的研究和发展奠定了一定的基础。
中图分类号:
张兴兰, 郭艳琨, 陈菲, 张丰. 基于量子Simon算法对分组密码类EM结构的密钥恢复攻击[J]. 信息网络安全, 2024, 24(1): 106-112.
ZHANG Xinglan, GUO Yankun, CHEN Fei, ZHANG Feng. Key Recovery Attacks on Block Cipher EM-Like Structures Based on Quantum Simon’s Algorithm[J]. Netinfo Security, 2024, 24(1): 106-112.
[1] | SHOR P. Algorithms for Quantum Computation: Discrete Logarithms and Factoring[C]// IEEE. 35th Annual Symposium on the Foundations of Computer Science. New York: IEEE, 1994: 124-134. |
[2] | National Institute of Standards and Technology. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process[EB/OL]. [2023-06-18]. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf. |
[3] | Grover L K. A Fast Quantum Mechanical Algorithm for Database Search[EB/OL]. (1996-11-19) [2023-06-18]. https://doi.org/10.48550/arXiv.quant-ph/9605043. |
[4] | XIE Huiqin, YANG Li. A Quantum Related-Key Attack Based on the Bernstein-Vazirani Algorithm[EB/OL]. (2020-07-14) [2023-06-18]. https://link.springer.com/article/10.1007/s11128-020-02741-2. |
[5] | KAPLAN M, LEURENT G, LEVERRIER A, et al. Quantum Differential and Linear Cryptanalysis[EB/OL]. (2017-05-07) [2023-06-18]. https://doi.org/10.48550/arXiv.1510.05836. |
[6] | XIE Huiqin, YANG Li. Quantum Impossible Differential and Truncated Differential Cryptanalysis[EB/OL]. (2018-07-23) [2023-06-18]. https://doi.org/10.48550/arXiv.1712.06997. |
[7] | VAZIRANI U. On the Power of Quantum Computation[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 1998, 356(1743): 1759-1768. |
[8] | KUWAKADO H, MORII M. Quantum Distinguisher between the 3-Round Feistel Cipher and the Random Permutation[C]// IEEE. IEEE International Symposium on Information Theory. New York: IEEE, 2010: 2682-2685. |
[9] | KUWAKADO H, MORII M. Security on the Quantum-Type Even-Mansour Cipher[C]// IEEE. Information Theory and Its Applications (ISITA), 2012 International Symposium on. New York: IEEE, 2012: 312-316. |
[10] | SANTOLI T, SCHAFFNER C. Using Simon's Algorithm to Attack Symmetric-Key Cryptographic Primitives[EB/OL]. (2017-01-31) [2023-06-18]. https://doi.org/10.48550/arXiv.1603.07856. |
[11] | MALVIYA A K, TIWARI N, CHAWLA M. Quantum Cryptanalytic Attacks of Symmetric Ciphers: A Review[J]. Computers and Electrical Engineering, 2022: 101-109. |
[12] |
GUO Jian, JEAN J, NIKOLI I, et al. Extended Meet-in-the-Middle Attacks on Some Feistel Constructions[J]. Designs Codes and Cryptography, 2016, 80(3): 587-618.
doi: 10.1007/s10623-015-0120-4 URL |
[13] | PATARIN J. Generic Attacks on Feistel Schemes[C]// Springer. International Conference on the Theory and Application of Cryptology and Information Security. Heidelberg: Springer, 2001: 222-238. |
[14] |
KIM P, HAN D, JEONG K C. Time-Space Complexity of Quantum Search Algorithms in Symmetric Cryptanalysis: Applying to AES and SHA-2[J]. Quantum Information Processing, 2018, 17(12): 1-39.
doi: 10.1007/s11128-017-1770-0 URL |
[15] | DONG Xiaoyang, DONG Bingyou, WANG Xiaoyun. Quantum Attacks on Some Feistel Block Ciphers[J]. Designs, Codes and Cryptography. 2020(88): 1179-1203. |
[16] | KAPLAN M, LEURENT G, LEVERRIER A, et al. Breaking Symmetric Cryptosystems Using Quantum Period Finding[C]// Springer. Annual International Cryptology Conference. Heidelberg: Springer, 2016: 207-237. |
[17] | LEVERRIER A. Quantum Differential Cryptanalysis[EB/OL]. (2015-02-12) [2023-06-18]. http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=15371. |
[18] |
BERNSTEIN E, VAZIRANI U. Quantum Complexity Theory[J]. Siam Journal on Computing, 1997, 26(5): 1411-1473.
doi: 10.1137/S0097539796300921 URL |
[19] | DAEMEN J, RIJMEN V. Probability Distributions of Correlation and Differentials in Block Ciphers[J]. Journal of Mathematical Cryptology, 2007, 1(3): 221-242. |
[20] | KAPLAN M. Quantum Attacks Against Iterated Block Ciphers[J]. Matematicheskie Voprosy Kriptografii, 2014, 34: 71-90. |
[21] |
SHIMON E, YISHAY M. A Construction of a Cipher from a Single Pseudorandom Permutation[J]. Journal of Cryptology, 1997, 10(3): 151-161.
doi: 10.1007/s001459900025 URL |
[22] | KATZ J, LINDELL Y. Introduction to Modern Cryptography[M]. Boca Raton: Chapman & Hall/CRC, 2007. |
[1] | 李志慧, 罗双双, 韦性佳. 基于一类受限存取结构上的量子秘密共享方案[J]. 信息网络安全, 2023, 23(8): 32-40. |
[2] | 张兴兰, 张丰. 量子求解欧拉函数破解RSA算法[J]. 信息网络安全, 2023, 23(7): 1-8. |
[3] | 杨宇光, 卢嘉煜. 一种基于星型簇态的动态的分级的量子秘密共享协议[J]. 信息网络安全, 2023, 23(6): 34-42. |
[4] | 张晓磊, 戴紫彬, 刘燕江, 曲彤洲. 面向分组密码的高速可重构模运算单元设计[J]. 信息网络安全, 2023, 23(5): 76-84. |
[5] | 肖昊, 赵延睿, 胡越, 刘笑帆. 抗量子密码中快速数论变换的硬件设计与实现[J]. 信息网络安全, 2023, 23(4): 72-79. |
[6] | 刘兴斌, 刘聪. 基于级联混沌系统和量子Baker映射的图像加密算法[J]. 信息网络安全, 2023, 23(12): 49-58. |
[7] | 胡禹佳, 代政一, 孙兵. SIMON算法的差分—线性密码分析[J]. 信息网络安全, 2022, 22(9): 63-75. |
[8] | 佟晓筠, 苏煜粤, 张淼, 王翥. 基于混沌和改进广义Feistel结构的轻量级密码算法[J]. 信息网络安全, 2022, 22(8): 8-18. |
[9] | 贾恒越, 刘康婷, 武霞, 王卯宁. 基于Bell态的量子支票协议[J]. 信息网络安全, 2022, 22(6): 38-43. |
[10] | 陶云亭, 孔凡玉, 于佳, 徐秋亮. 抗量子格密码体制的快速数论变换算法研究综述[J]. 信息网络安全, 2021, 21(9): 46-51. |
[11] | 杨云霄, 沈璇, 孙兵. Mysterion算法的不可能差分分析[J]. 信息网络安全, 2021, 21(8): 43-51. |
[12] | 刘璐, 李志慧, 芦殿军, 闫晨红. 基于线性码的量子秘密共享方案[J]. 信息网络安全, 2021, 21(8): 62-69. |
[13] | 谢四江, 高琼, 冯雁. 基于可信中继量子密钥分发网络的最少公共节点多路径路由方案[J]. 信息网络安全, 2021, 21(7): 35-42. |
[14] | 李丹, 燕婷, 郭瑞. 基于交替量子漫步的量子彩色图像加密算法[J]. 信息网络安全, 2021, 21(6): 45-51. |
[15] | 周艺华, 董松寿, 杨宇光. 标准模型下基于格的身份代理部分盲签名方案[J]. 信息网络安全, 2021, 21(3): 37-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||