信息网络安全 ›› 2023, Vol. 23 ›› Issue (4): 72-79.doi: 10.3969/j.issn.1671-1122.2023.04.008
收稿日期:
2022-12-16
出版日期:
2023-04-10
发布日期:
2023-04-18
通讯作者:
肖昊
E-mail:xiaohao@hfut.edu.cn
作者简介:
肖昊(1982—),男,安徽,教授,博士,主要研究方向为可信计算芯片、专用硬件加速器和多核片上系统设计|赵延睿(1998—),男,山东,硕士研究生,主要研究方向为信息安全与硬件加速|胡越(1998—),男,安徽,硕士研究生,主要研究方向为椭圆曲线密码学|刘笑帆(1997—),女,河北,硕士研究生,主要研究方向为可信计算。
基金资助:
XIAO Hao(), ZHAO Yanrui, HU Yue, LIU Xiaofan
Received:
2022-12-16
Online:
2023-04-10
Published:
2023-04-18
Contact:
XIAO Hao
E-mail:xiaohao@hfut.edu.cn
摘要:
快速数论变换(Number Theoretic Transform,NTT)是抗量子密码算法的关键部分,其计算性能对系统的运行速度至关重要。相比经典的NTT算法,高基NTT算法可以达到更好的计算性能。针对高基NTT硬件实现过程中计算流程冗长、控制逻辑复杂的问题,文章基于流水线结构提出一种高性能的基-4 NTT硬件架构。首先,基于经典NTT算法,推导出利于硬件实现的基-4递归NTT,简化了高基算法的计算流程;然后,提出一种单路延迟反馈结构,对计算流程进行有效的流水线分割,降低了硬件架构的复杂度;最后,利用两级蝶形运算耦合实现基-4蝶形单元,并使用移位与加法优化约简计算过程,节省了硬件资源开销。文章以抗量子密码方案Falcon为例,在Xilinx Artix-7 FPGA上实现了所提出的NTT硬件架构。实验结果表明,与其他相关的设计相比,文章提出的设计方案在计算性能和硬件开销等方面表现更好。
中图分类号:
肖昊, 赵延睿, 胡越, 刘笑帆. 抗量子密码中快速数论变换的硬件设计与实现[J]. 信息网络安全, 2023, 23(4): 72-79.
XIAO Hao, ZHAO Yanrui, HU Yue, LIU Xiaofan. Hardware Design and Implementation of Number Theoretic Transform in Post-Quantum Cryptography[J]. Netinfo Security, 2023, 23(4): 72-79.
表2
NTT设计的性能对比
方案 | 实现 平台 | 时序参数 | 资源开销 | ATP1 | ATP2 | |||
---|---|---|---|---|---|---|---|---|
频率/MHz | 周期 | 平均 时间/μs | LUT | DSP | ||||
点数n=1024,模数q=12289,位宽14 bit | ||||||||
文献[20]方案 | Artix-7 | 213 | 1308 | 6.1 | 1161 | 12 | 7082.1 | 73.2 |
文献[21]方案 | Zynq-7000 | 188 | 2032 | 10.8 | 898 | 4 | 9698.4 | 43.2 |
文献[29]方案 | Artix-7 | 200 | 1445 | 7.2 | 1839 | 12 | 13240.8 | 86.4 |
文献[30]方案 | Zynq-7000 | 152 | 1280 | 8.4 | 4823 | 8 | 40513.2 | 67.2 |
本文方案 | Artix-7 | 227 | 2475 | 4.6 | 2829 | 4 | 13013.4 | 18.4 |
[1] |
SHOR P W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer[J]. SIAM Review, 1999, 41(2): 303-332.
doi: 10.1137/S0036144598347011 URL |
[2] | TAO Yunting, KONG Fanyu, YU Jia, et al. Survey of Number Theoretic Transform Algorithms for Quantum-Resistant Lattice-Based Cryptography[J]. Netinfo Security, 2021, 21(9): 46-51. |
陶云亭, 孔凡玉, 于佳, 等. 抗量子格密码体制的快速数论变换算法研究综述[J]. 信息网络安全, 2021, 21(9):46-51. | |
[3] | LIU Zhe, SEO H, ROY S, et al. Efficient Ring-LWE Encryption on 8-Bit AVR Processors[C]// Springer. 17th International Workshop on Cryptographic Hardware and Embedded Systems. Heidelberg: Spring, 2015: 663-682. |
[4] | YANG Yingshan, GU Xiaozhuo, WANG Bin, et al. Efficient Password-Authenticated Key Exchange from RLWE Based on Asymmetric Key Consensus[C]// Springer. 15th International Conference on Information Security and Cryptology. Heidelberg: Spring, 2019: 31-49. |
[5] | Shanghai Jiaotong University. Shanghai Jiaotong University Gu Dawu Team Achieves Breaking the LWE Challenge World Record[EB/OL]. (2022-03-10)[2022-10-13]. http://netinfo-security.org/CN/Y2022/V22/I3/100. |
上海交通大学. 网安学院谷大武团队成果打破格密码LWE Challenge的世界纪录[EB/OL]. (2022-02-24)[2022-10-13]. https://infosec.sjtu.edu.cn/NewsDetail.aspx?id=208. | |
[6] | ZHANG He, WANG Peng, LI Sizhao. Research on Lattice-Based Post-Quantum Cryptosystem[J]. Radio Engineering, 2022, 52(8): 1310-1321. |
张贺, 王鹏, 李思照. 基于格的后量子密码系统研究[J]. 无线电工程, 2022, 52(8):1310-1321. | |
[7] | ALAGIC G, ALPERIN-SHERIFF J, APON D, et al. Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process[R]. Gaithersburg: NIST, NISTIR 8309, 2020. |
[8] |
YIN Yanzhao, WU Liji, ZHANG Xiangmin, et al. Method to Construct Extension Field for NTT of Polynomial Multiplication with Small Modulus[J]. Journal of Cryptologic Research. 2021, 8(2): 260-272.
doi: 10.13868/j.cnki.jcr.000435 |
殷彦昭, 乌力吉, 张向民, 等. 一种用于小模数多项式乘法快速数论变换的扩域方法[J]. 密码学报, 2021, 8(2):260-272.
doi: 10.13868/j.cnki.jcr.000435 |
|
[9] | XIE Xing, HUANG Xinming, SUN Ling, et al. FPGA Design and Implementation of Large Integer Multiplier[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1855-1860. |
谢星, 黄新明, 孙玲, 等. 大整数乘法器的FPGA设计与实现[J]. 电子与信息学报, 2019, 41(8):1855-1860. | |
[10] | BANERJEE U, PATHAK A, CHANDRAKASAN A P. 2.3 An Energy-Efficient Configurable Lattice Cryptography Processor for the Quantum-Secure Internet of Things[C]// IEEE. 2019 IEEE International Solid-State Circuits Conference(ISSCC). New York: IEEE, 2019: 46-48. |
[11] | RIAZI M S, LAINE K, PELTON B, et al. HEAX: An Architecture for Computing on Encrypted Data[C]// ACM. Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2020: 1295-1309. |
[12] | XIE Xing, SUN Ling, HUANG Xinming, et al. Design and Implementation of Finite Field NTT Algorithm Based on FPGA[J]. Modern Electronics Technique, 2020, 43(9): 79-82. |
谢星, 孙玲, 黄新明, 等. 基于FPGA的有限域NTT算法设计与实现[J]. 现代电子技术, 2020, 43(9):79-82. | |
[13] | PALUDO R, SOUSA L. Number Theoretic Transform Architecture Suitable to Lattice-Based Fully-Homomorphic Encryption[C]// IEEE. 2021 IEEE 32nd International Conference on Application-Specific Systems, Architectures and Processors (ASAP). New York: IEEE, 2021: 163-170. |
[14] | ZHANG Ye, WANG Shuo, ZHANG Xian, et al. Pipezk: Accelerating Zero-Knowledge Proof with a Pipelined Architecture[C]// IEEE. 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). New York: IEEE, 2021: 416-428. |
[15] | HUA Siliang, ZHANG Huiguo, WANG Shuchang. Optimization and Implementation of Number Theoretical Transform Multiplier Butterfly Operation for Fully Homomorphic Encryption[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1381-1388. |
华斯亮, 张惠国, 王书昶. 用于全同态加密的数论变换乘法蝶形运算优化及实现[J]. 电子与信息学报, 2021, 43(5):1381-1388. | |
[16] |
YE Zewen, CHEUNG R C C, HUANG Kejie. PipeNTT: A Pipelined Number Theoretic Transform Architecture[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(10): 4068-4072.
doi: 10.1109/TCSII.2022.3184703 URL |
[17] | RENTERIA-MEJIA C P, VELASCO-MEDINA J. Hardware Design of an NTT-Based Polynomial Multiplier[C]// IEEE. 2014 IX Southern Conference on Programmable Logic (SPL). New York: IEEE, 2014: 1-5. |
[18] | WEI Xing, HUANG Zhihong, YANG Haigang. High Throughput Dual-Mode Reconfigurable Floating-Point FFT Processor[J]. Journal of Electronics & Information Technology, 2018, 40(12): 3042-3050. |
魏星, 黄志洪, 杨海钢. 高吞吐率双模浮点可重构FFT处理器设计实现[J]. 电子与信息学报, 2018, 40(12):3042-3050. | |
[19] |
WANG Wei, HUANG Xinming, EMMART N, et al. VLSI Design of a Large-Number Multiplier for Fully Homomorphic Encryption[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 22(9): 1879-1887.
doi: 10.1109/TVLSI.2013.2281786 URL |
[20] | CHEN Xiangren, YANG Bohan, YIN Shouyi, et al. CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture with an Efficient Conflict-Free Memory Mapping Scheme[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022: 94-126. |
[21] | NGUYEN D T, DANG V B, GAJ K. A High-Level Synthesis Approach to the Software/Hardware Codesign of NTT-Based Post-Quantum Cryptography Algorithms[C]// IEEE. 2019 International Conference on Field-Programmable Technology (ICFPT). New York: IEEE, 2019: 371-374. |
[22] | BANERJEE U, UKYAB T S, CHANDRAKASAN A P. Sapphire: A Configurable Crypto-Processor for Post-Quantum Lattice-Based Protocols[EB/OL]. (2019-10-16)[2022-10-13]. https://arxiv.org/abs/1910.07557. |
[23] | XIAO Hao, YU Sijia, CHENG Biqian, et al. FPGA-Based High-Throughput Montgomery Modular Multipliers for RSA Cryptosystems[J]. IEICE Electronics Express, 2022, 68(6): 2137-2141. |
[24] | CHE Wenjie, GAO Xianwei. FPGA Design and Implementation of the Carry-Save Barrett Modular Multiplication[J]. Electronic Design Engineering, 2016, 24(4): 7-9. |
车文洁, 高献伟. 基于FPGA的进位保留 Barrett 模乘法器设计与实现[J]. 电子设计工程, 2016, 24(4):7-9. | |
[25] | HARVEY D. Faster Arithmetic for Number-Theoretic Transforms[J]. Journal of Symbolic Computation, 2014(60): 113-119. |
[26] | XIAO Hao. Research and Design of Multimode Fast Fourier Transform (FFT) Accelerators in Baseband Processors[D]. Shanghai: Fudan University, 2009. |
肖昊. 基带处理器中多模快速傅里叶变换(FFT)加速器的研究与设计[D]. 上海: 复旦大学, 2009. | |
[27] |
CLAUDIA P R M, VELASCO M J. High-Throughput Ring-LWE Cryptoprocessors[J]. IEEE Transactions on Very Large Scale Integration Systems, 2017, 25(8): 2332-2345.
doi: 10.1109/TVLSI.92 URL |
[28] | YE J H, SHIEH M D. High-Performance NTT Architecture for Large Integer Multiplication[C]// IEEE. 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT). New York: IEEE, 2018: 1-4. |
[29] | MERT A C, KARABULUT E, OZTURK E, et al. An Extensive Study of Flexible Design Methods for the Number Theoretic Transform[EB/OL]. (2020-08-19)[2022-10-13]. https://www.researchgate.net/publication/343753706_An_Extensive_Study_of_Flexible_Design_Methods_for_the_Number_Theoretic_Transform. |
[30] |
XING Yufei, LI Shuguo. An Efficient Implementation of the New Hope Key Exchange on FPGAs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 67(3): 866-878.
doi: 10.1109/TCSI.8919 URL |
[1] | 陶云亭, 孔凡玉, 于佳, 徐秋亮. 抗量子格密码体制的快速数论变换算法研究综述[J]. 信息网络安全, 2021, 21(9): 46-51. |
[2] | 李鱼, 韩益亮, 李喆, 朱率率. 基于LWE的抗量子认证密钥交换协议[J]. 信息网络安全, 2020, 20(10): 92-99. |
[3] | 张焕国;王后珍. 抗量子计算密码体制研究(续前)[J]. , 2011, 11(6): 0-0. |
[4] | 张焕国;王后珍. 抗量子计算密码体制研究(待续)[J]. , 2011, 11(5): 0-0. |
[5] | 肖梓航;桑胜田;肖新光. 反病毒引擎硬件加速技术研究[J]. , 2011, 11(1): 0-0. |
[6] | 万月亮;代宏伟;刘宏志;童克东. 多核处理架构的安全实现[J]. , 2010, (10): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||