信息网络安全 ›› 2023, Vol. 23 ›› Issue (11): 27-37.doi: 10.3969/j.issn.1671-1122.2023.11.004
孙永奇1,2(), 宋泽文1,2, 朱卫国1,2, 赵思聪3
收稿日期:
2023-08-30
出版日期:
2023-11-10
发布日期:
2023-11-10
通讯作者:
孙永奇 作者简介:
孙永奇(1969—),男,河南,教授,博士,CCF会员,主要研究方向为深度学习和人工智能安全|宋泽文(1999—),男,湖北,硕士研究生,CCF会员,主要研究方向为深度学习和数据隐私保护|朱卫国(1995—),男,天津,博士研究生,CCF会员,主要研究方向为深度学习和数据隐私保护|赵思聪(1987—),男,辽宁,高级工程师,博士,主要研究方向为深度学习和人工智能安全
基金资助:
SUN Yongqi1,2(), SONG Zewen1,2, ZHU Weiguo1,2, ZHAO Sicong3
Received:
2023-08-30
Online:
2023-11-10
Published:
2023-11-10
摘要:
文章针对基于安全多方计算(Secure Multi-Party Computation,MPC)的图像分类方法进行研究,针对基于ABY3协议的PaddleFL方法无法支持复杂模型中的一些网络加密操作问题,提出一种面向ABY3协议重复秘密共享的维度变换和维度压缩操作的加密方法;针对基于Beaver协议的CrypTen方法在密文训练时出现的模型崩溃问题,提出一种基于标志位的检测方法,通过舍弃异常值避免模型训练的环绕错误;针对近似计算错误问题,提出一种基于阈值限制的Softmax函数密文计算方法,满足更大数值范围的密文计算。在公开数据集上进行实验,结果表明,该方法能够在保证模型准确性的前提下有效保护用户数据的隐私。
中图分类号:
孙永奇, 宋泽文, 朱卫国, 赵思聪. 基于安全多方计算的图像分类方法[J]. 信息网络安全, 2023, 23(11): 27-37.
SUN Yongqi, SONG Zewen, ZHU Weiguo, ZHAO Sicong. Image Classification Method Based on Secure Multiparty Computation[J]. Netinfo Security, 2023, 23(11): 27-37.
表1
图像文本识别模型网络结构及其参数
网络层 | 尺寸 | 参数(步长,填充) |
---|---|---|
Convolution+ReLU | 16×3×3 | (1, 1) |
MaxPooling | 16×2×2 | (2, 0) |
Convolution+ReLU | 32×3×3 | (1, 1) |
MaxPooling | 32×2×2 | (2, 0) |
Convolution+ReLU | 64×3×3 | (1, 1) |
Convolution+ReLU | 64×2×2 | (1, 1) |
FullyConnected | 50 | — |
MaxPooling | 64×2×2 | (2, 0) |
Convolution+ReLU+BtchNorm | 128×3×3 | (1, 1) |
Convolution+ReLU+BtchNorm | 128×3×3 | (1, 1) |
FullyConnected | 54 | — |
MaxPooling | 128×2×2 | (2, 0) |
Convolution | 128×2×2 | (1, 0) |
Transpose | — | perm=(1, 2, 0) |
Squeeze | — | axes=0 |
FullyConnected +Softmax | 38 | — |
表5
场景一下模型的测试结果
框架 | 数据集 | 准确率 | 推理时间/s |
---|---|---|---|
PaddlePaddle | MNIST | 98.47% | 2.05×10-5 |
Fashion-MNIST | 87.90% | 2.03×10-5 | |
CIFAR-10 | 59.23% | 2.37×10-5 | |
PaddleFL | MNIST | 98.47% | 0.000955 |
Fashion-MNIST | 87.90% | 0.000845 | |
CIFAR-10 | 59.23% | 0.001182 | |
PyTorch | MNIST | 98.48% | 4.03×10-6 |
Fashion-MNIST | 87.47% | 3.94×10-6 | |
CIFAR-10 | 58.24% | 4.21×10-6 | |
CrypTen | MNIST | 98.48% | 0.0159 |
Fashion-MNIST | 87.47% | 0.0159 | |
CIFAR-10 | 58.24% | 0.0211 |
表6
场景二下模型的训练和测试结果
框架 | 数据集 | 准确率(密文/明文) | 训练时间/s | 推理时间/s |
---|---|---|---|---|
PaddleFL | MNIST | 98.22%/98.47% | 0.00159 | 0.000946 |
Fashion-MNIST | 86.92%/87.90% | 0.00158 | 0.000835 | |
CIFAR-10 | 56.43%/59.23% | 0.00247 | 0.001211 | |
CrypTen | MNIST | 98.60%/98.48% | 0.0299 | 0.0161 |
Fashion-MNIST | 87.43%/87.47% | 0.0306 | 0.0158 | |
CIFAR-10 | 57.51%/58.24% | 0.0395 | 0.0217 |
[1] | WANG Fei. Application Analysis of Privacy Computing in the Field of Public Security[J]. Netinfo Security, 2021, 21(S1): 70-73. |
王飞. 隐私计算在公安领域的应用分析[J]. 信息网络安全, 2021, 21(S1):70-73. | |
[2] | YAO C C. Protocols for Secure Computations[C]// IEEE. 23rd Annual Symposium on Foundations of Computer Science. New York: IEEE, 1982: 160-164. |
[3] | YAO C C. How to Generate and Exchange Secrets[C]// IEEE. 27th Annual Symposium on Foundations of Computer Science. New York: IEEE, 1986: 162-167. |
[4] | CHAUM D, CRÉPEAU C, DAMGARD I. Multiparty Unconditionally Secure Protocols[C]// ACM. 20th Annual ACM Symposium on Theory of Computing. New York: ACM, 1988: 11-19. |
[5] |
SHAMIR A. How to Share a Secret[J]. Communications of the ACM, 1979, 22(11): 612-613.
doi: 10.1145/359168.359176 URL |
[6] | BLAKLEY G R. Safeguarding Cryptographic Keys[C]// IEEE. Managing Requirements Knowledge, International Workshop on IEEE Computer Society. New York: IEEE, 1979: 313-318. |
[7] | GOLDREICH O. How to Play Any Mental Game[C]// ACM. 19th Annual ACM Symposium on Theory of Computing. New York: ACM, 1987: 218-229. |
[8] | BEAVER D. Efficient Multiparty Protocols Using Circuit Randomization[C]// Springer. 11th Annual International Cryptology Conference on Advances in Cryptology. Heidelberg: Springer, 1991: 420-432. |
[9] | PEI Bei, ZHANG Shuihai, LYU Chunli. A Proactive Multi-Secret Sharing Scheme for Cloud Storage[J]. Netinfo Security, 2023, 23(5): 95-104. |
裴蓓, 张水海, 吕春利. 用于云存储的主动秘密共享方案[J]. 信息网络安全, 2023, 23(5):95-104. | |
[10] | ARAKI T, FURUKAWA J, LINDELL Y, et al. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority[C]// ACM. 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 805-817. |
[11] | MOHASSEL P, RINDAL P. ABY3: A Mixed Protocol Framework for Machine Learning[C]// ACM. 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 35-52. |
[12] | WAGH S, TOPLE S, BENHAMOUDA F, et al. Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning[J]. Privacy Enhancing Technologies, 2021(1): 188-208. |
[13] | WAGH S, GUPTA D, CHANDRAN N. SecureNN: 3-Party Secure Computation for Neural Network Training[J]. Privacy Enhancing Technologies, 2019(3): 26-49. |
[14] |
LECUN Y, BOTTOU L. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
doi: 10.1109/5.726791 URL |
[15] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of The ACM, 2017, 60(6): 84-90.
doi: 10.1145/3065386 URL |
[16] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[EB/OL]. (2014-09-04)[2023-07-27]. https://doi.org/10.48550/arXiv.1409.1556. |
[17] | SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going Deeper with Convolutions[C]// IEEE. Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9. |
[18] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep Residual Learning for Image Recognition[C]// IEEE. Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778. |
[19] | HARALAMPIEVA V, RUECKERT D, PASSERAT-PALMBACH J. A Systematic Comparison of Encrypted Machine Learning Solutions for Image Classification[C]// ACM. 2020 Workshop on Privacy-Preserving Machine Learning in Practice. New York: ACM, 2020: 55-59. |
[20] | BAIDU. Instructions for PaddleFL-MPC Model Encryption Demo[EB/OL]. (2021-06-07)[2023-07-27]. https://github.com/PaddlePaddle/PaddleFL/tree/master/python/paddle_fl/mpc/examples/model_encryption. |
[21] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale[EB/OL]. (2020-10-22)[2023-07-27]. https://arxiv.org/abs/2010.11929v2. |
[22] | MOHASSEL P, ZHANG Yupeng. SecureML: A System for Scalable Privacy-Preserving Machine Learning[C]// IEEE. Security and Privacy(SP). New York: IEEE, 2017: 19-38. |
[23] | RIAZI M S, WEINERT C, TKACHENKO O, et al. Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications[C]// ACM. 2018 Asia Conference on Computer and Communications Security. New York: ACM, 2018: 707-721. |
[24] | KNOTT B, VENKATARAMAN S, HANNUN A, et al. CrypTen: Secure Multi-Party Computation Meets Machine Learning[EB/OL]. (2021-09-02)[2023-07-27]. https://arxiv.org/abs/2109.00984. |
[25] | LEÓN MD, MORENO-BÁEZ A, MAGALLANES-QUINTANAR R, et al. Assessment in Subsets of MNIST Handwritten Digits and Their Effect in the Recognition Rate[J]. Journal of Pattern Recognition Research, 2011, 2(2): 244-252. |
[26] | XIAO Han, RASUL K, VOLLGRAF R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms[EB/OL]. (2017-09-15)[2023-07-27]. https://arxiv.org/abs/1708.07747. |
[27] |
LI Hongmin, LIU Hanchao, JI Xiangyang, et al. CIFAR10-DVS: An Event-Stream Dataset for Object Classification[J]. Frontiers in Neuroscience, 2017, 11: 309-319.
doi: 10.3389/fnins.2017.00309 pmid: 28611582 |
[1] | 李晨蔚, 张恒巍, 高伟, 杨博. 基于AdaN自适应梯度优化的图像对抗迁移攻击方法[J]. 信息网络安全, 2023, 23(7): 64-73. |
[2] | 李增鹏, 王梅, 陈梦佳. 新形态伪随机函数研究[J]. 信息网络安全, 2023, 23(5): 11-21. |
[3] | 郑耀昊, 王利明, 杨婧. 基于网络结构自动搜索的对抗样本防御方法研究[J]. 信息网络安全, 2022, 22(3): 70-77. |
[4] | 唐春明, 林旭慧. 隐私保护集合交集计算协议[J]. 信息网络安全, 2020, 20(1): 9-15. |
[5] | 陈付龙, 张紫阳, 王涛春, 谢冬. 一种基于联络信号的物联网安全身份认证方法[J]. 信息网络安全, 2018, 18(11): 40-48. |
[6] | 陈莉;林柏钢. 基于分布式线性方程组求解的安全多方计算协议[J]. , 2013, 13(9): 0-0. |
[7] | 刘镪;唐春明;胡杏;张永强. 多租赁用户模型下有效安全外包计算[J]. , 2013, 13(9): 0-0. |
[8] | 南文倩;郭斌;於志文;皇甫深龙. 基于群智感知的校园活动信息采集与分享系统[J]. , 2013, 13(12): 0-0. |
[9] | 封化民;孙轶茹;孙莹. 基于身份认证加密的匿名私钥共享方案[J]. , 2013, 13(11): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||