信息网络安全 ›› 2023, Vol. 23 ›› Issue (11): 27-37.doi: 10.3969/j.issn.1671-1122.2023.11.004

• 技术研究 • 上一篇    下一篇

基于安全多方计算的图像分类方法

孙永奇1,2(), 宋泽文1,2, 朱卫国1,2, 赵思聪3   

  1. 1.交通大数据与人工智能教育部重点实验室,北京 100044
    2.北京交通大学计算机与信息技术学院,北京 100044
    3.北京航天晨信科技有限责任公司,北京 102308
  • 收稿日期:2023-08-30 出版日期:2023-11-10 发布日期:2023-11-10
  • 通讯作者: 孙永奇 yqsun@bjtu.edu.cn
  • 作者简介:孙永奇(1969—),男,河南,教授,博士,CCF会员,主要研究方向为深度学习和人工智能安全|宋泽文(1999—),男,湖北,硕士研究生,CCF会员,主要研究方向为深度学习和数据隐私保护|朱卫国(1995—),男,天津,博士研究生,CCF会员,主要研究方向为深度学习和数据隐私保护|赵思聪(1987—),男,辽宁,高级工程师,博士,主要研究方向为深度学习和人工智能安全
  • 基金资助:
    科技创新2030—重大项目(2021ZD0113002)

Image Classification Method Based on Secure Multiparty Computation

SUN Yongqi1,2(), SONG Zewen1,2, ZHU Weiguo1,2, ZHAO Sicong3   

  1. 1. Key Laboratory of Big Data & Artificial Intelligence in Transportation, Ministry of Education, Beijing 100044, China
    2. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
    3. Beijing Aerocim Technology Co., Ltd., Beijing 102308, China
  • Received:2023-08-30 Online:2023-11-10 Published:2023-11-10

摘要:

文章针对基于安全多方计算(Secure Multi-Party Computation,MPC)的图像分类方法进行研究,针对基于ABY3协议的PaddleFL方法无法支持复杂模型中的一些网络加密操作问题,提出一种面向ABY3协议重复秘密共享的维度变换和维度压缩操作的加密方法;针对基于Beaver协议的CrypTen方法在密文训练时出现的模型崩溃问题,提出一种基于标志位的检测方法,通过舍弃异常值避免模型训练的环绕错误;针对近似计算错误问题,提出一种基于阈值限制的Softmax函数密文计算方法,满足更大数值范围的密文计算。在公开数据集上进行实验,结果表明,该方法能够在保证模型准确性的前提下有效保护用户数据的隐私。

关键词: 图像分类, 隐私保护机器学习, 安全多方计算, PaddleFL, CrypTen

Abstract:

This paper focused on researching image classification methods based on secure multiparty computation. To solve the problem that the PaddleFL method based on the ABY3 protocol cannot support some network encryption operations in complex models, this paper proposed an encryption method for dimension transformation and compression operations based on the repeated secret sharing of the ABY3 protocol. To solve the model collapse problem of the CrypTen method based on the Beaver protocol during ciphertext training, this paper proposed a detection method based on a flag to discard abnormal values to avoid wrap-around errors during training, and introduce a ciphertext calculation method based on threshold restriction for the softmax function to eliminate approximation calculation errors, meeting the requirement of ciphertext calculation of a larger numerical range. Experimental results on public datasets show that the proposed method can effectively protect user data privacy while ensuring model accuracy.

Key words: image classification, privacy-preserving machine learning, secure multiparty computation, PaddleFL, CrypTen

中图分类号: