Netinfo Security ›› 2024, Vol. 24 ›› Issue (3): 363-373.doi: 10.3969/j.issn.1671-1122.2024.03.003
Previous Articles Next Articles
QI Han1, WANG Jingtong1(), ABDULLAH Gani2, GONG Changqing1
Received:
2024-01-05
Online:
2024-03-10
Published:
2024-04-03
Contact:
WANG Jingtong
E-mail:1871403326@qq.com
CLC Number:
QI Han, WANG Jingtong, ABDULLAH Gani, GONG Changqing. Robustness of Variational Quantum Convolutional Neural Networks Based on Random Quantum Layers[J]. Netinfo Security, 2024, 24(3): 363-373.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2024.03.003
模型 | 准确率 | 精确率 | 召回率 | F1值 | FPR | FNR | FAR | 训练时间/s |
---|---|---|---|---|---|---|---|---|
QNN | 97.20% | 97.21% | 99.55% | 98.35% | 6.85% | 1.36% | 4.11% | 1568 |
QCNN | 98.52% | 98.35% | 99.76% | 99.03% | 3.73% | 0.24% | 1.99% | 2110 |
VQNN | 95.94% | 98.30% | 96.27% | 97.26% | 4.63% | 0.82% | 2.73% | 2349 |
HQCNN | 97.50% | 99.64% | 97.30% | 98.41% | 5.68% | 1.27% | 3.48% | 1236 |
VQCNN | 98.68% | 100% | 93.33% | 96.55% | 5.34% | 0.67% | 3.33% | 2893 |
[1] |
ARUTE F, ARYA K, BABBUSH R, et al. Quantum Supremacy Using a Programmable Superconducting Processor[J]. Nature, 2019, 574: 505-510.
doi: 10.1038/s41586-019-1666-5 |
[2] |
JORDAN M I, MITCHELL T M. Machine Learning: Trends, Machine Learning: Trends, Perspectives, and Prospects[J]. Science, 2015, 349(6245): 255-260.
doi: 10.1126/science.aaa8415 pmid: 26185243 |
[3] | ZHOU L, WANG Shengtao, CHOI S, et al. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices[EB/OL]. (2020-06-24)[2023-12-05]. https://doi.org/10.1103/PhysRevX.10.021067. |
[4] |
LI Ya, TIAN Xinmei, SONG Mingli, et al. Multi-Task Proximal Support Vector Machine[J]. Pattern Recognition, 2015, 48(10): 3249-3257.
doi: 10.1016/j.patcog.2015.01.014 URL |
[5] | ZHOU Shangnan. Quantum Data Compression and Quantum Cross Entropy[EB/OL]. (2021-06-25)[2023-12-05]. https://ui.adsabs.harvard.edu/abs/2021arXiv210613823S. |
[6] |
CHEN Yiwei, PAN Yu, DONG Daoyi, et al. Quantum Language Model with Entanglement Embedding for Question Answering[J]. IEEE Transactions on Cybernetics, 2023, 53(6): 3467-3478.
doi: 10.1109/TCYB.2021.3131252 URL |
[7] |
BIAMONTE J, WITTEK P, PANCOTTI N. Quantum Machine Learning[J]. Nature, 2017, 549: 195-202.
doi: 10.1038/nature23474 URL |
[8] | AVRAMOULI M, SAVVAS I K, VASILAKI A, et al. Unlocking the Potential of Quantum Machine Learning to Advance Drug Discovery[EB/OL]. (2023-05-25)[2023-12-05]. https://doi.org/10.3390/electronics12112402. |
[9] | SCHUHMACHER J, MAZZOLA G, TACCHINO F, et al. Extending the Reach of Quantum Computing for Materials Science with Machine Learning Potentials[EB/OL]. (2022-11-17)[2023-12-05]. https://doi.org/10.1063/5.0099469. |
[10] |
CONG I, CHOI S, LUKIN M D. Quantum Convolutional Neural Networks[J]. NATURE PHYSICS, 2019, 15: 1273-1278.
doi: 10.1038/s41567-019-0648-8 |
[11] | HE Rui, DING Zeqing. Recognition of Micro Parts Based on Quantum Convolution Neural Network Algorithm[J]. Food & Machinery, 2021, 37(6): 120-125. |
何瑞, 丁泽庆. 基于量子卷积神经网络算法的微小零件识别[J]. 食品与机械, 2021, 37(6): 120-125. | |
[12] | PESAH A, CEREZO M, WANG S, et al. Absence of Barren Plateaus in Quantum Convolutional Neural Networks[EB/OL]. (2022-10-15)[2023-12-05]. https://link.aps.org/doi/10.1103/PhysRevX.11.041011. |
[13] | FAN Xingkui, LIU Guangzhe, WANG Haowen, et al. A New Model of Image Recognition Based on Quantum Convolutional Neural Network[J]. Journal of University of Electronic Science and Technology of China, 2022, 5: 642-650. |
范兴奎, 刘广哲, 王浩文, 等. 基于量子卷积神经网络的图像识别新模型[J]. 电子科技大学学报, 2022, 5: 642-650. | |
[14] | PRESKILL J. Quantum Computing in the NISQ Era and Beyond[EB/OL]. (2018-08-06)[2023-12-05]. http://dx.doi.org/10.22331/q-2018-08-06-79. |
[15] |
XIA Rongxin, KAIS S. Hybrid Quantum-Classical Neural Network for Calculating Ground State Energies of Molecules[J]. Entropy, 2020, 22(8): 828-840.
doi: 10.3390/e22080828 URL |
[16] | LIU Junhua, LIM K H, WOOD K L, et al. Hybrid Quantum-Classical Convolutional Neural Networks[EB/OL]. (2023-09-25)[2023-12-05]. https://doi.org/10.3389/fmars.2023.1158548. |
[17] | HUANG Fangyu, TAN Xiaoqing, HUANG Rui, et al. Variational Convolutional Neural Networks Classifiers[EB/OL]. (2022-08-13)[2023-12-05]. https://doi.org/10.1016/j.physa.2022.128067. |
[18] | WANG Aijuan, HU Jianglong, ZHANG Shiyue, et al. Shallow Hybrid Quantum-Classical Convolutional Neural Network Model for Image Classification[EB/OL]. (2023-05-09)[2023-12-05]. https://doi.org/10.1007/s11128-023-04217-5. |
[19] |
JEONG S G, DO Q V, HWANG H J, et al. Hybrid Quantum Convolutional Neural Networks for UWB Signal Classification[J]. IEEE ACCESS, 2023, 11: 113726-113739.
doi: 10.1109/ACCESS.2023.3323019 URL |
[20] | BOKHAN D, MASTIUKOVA A S, BOEV A S, et al. Multiclass Classification Using Quantum Convolutional Neural Networks with Hybrid Quantum-Classical Learning[EB/OL]. (2022-11-23)[2023-12-05]. http://dx.doi.org/10.3389/fphy.2022.1069985. |
[21] | YANG C H, QI Jun, CHEN S Y, et al. Decentralizing Feature Extraction with Quantum Convolutional Neural Network for Automatic Speech Recognition[EB/OL]. (2021-02-12)[2023-12-05]. https://doi.org/10.1109/ICASSP39728.2021.9413453. |
[22] | OVALLE-MAGALLANES M, AVINA-CERVANTES J, CRUZ-ACEVES I, et al. Hybrid Classical-Quantum Convolutional Neural Network for Stenosis Detection in X-Ray Coronary Angiography[EB/OL]. (2022-03-01)[2023-12-05]. https://doi.org/10.1016/j.eswa.2021.116112. |
[23] | LU Sirui, DUAN Luming, DENG Dongling, et al. Quantum Adversarial Machine Learning[EB/OL]. (2020-08-06)[2023-12-05]. http://dx.doi.org/10.1103/PhysRevResearch.2.033212. |
[24] | HUANG Chenyi, ZHANG Shibin. Enhancing Adversarial Robustness of Quantum Neural Networks by Adding Noise Layers[EB/OL]. (2023-08-10)[2023-12-05]. https://dx.doi.org/10.1088/1367-2630/ace8b4. |
[25] | DU Yuxuan, HSIEH M H, LIU Tongliang, et al. Quantum Noise Protects Quantum Classi-Fiers against Adversaries[EB/OL]. (2021-05-27)[2023-12-05]. https://doi.org/10.1103/PhysRevResearch.3.023153. |
[26] | HU Ling, WU Shuhan, CAI Weizhou, et al. Quantum Generative Adversarial Learning in a Superconducting Quantum Circuit[EB/OL]. (2019-01-25)[2023-12-05]. https://www.science.org/doi/abs/10.1126/sciadv.aav2761. |
[27] | TSIPRAS D, SANTURKAR S, ENGSTROM L, et al. Robustness May Be at Odds with Accuracy[EB/OL]. (2019-09-09)[2023-12-05]. https://doi.org/10.48550/arXiv.1805.12152. |
[28] | ZHANG Chaoyun, XAVIER C P, PAUL P. Tiki-Taka: Attacking and Defending Deep Learning-Based Intrusion Detection Systems[J]. Association for Computing Machinery, 2020, 13: 27-39. |
[29] | WU Jiansheng, ZHANG Wenpeng, MA Yuan. Data Analysis And Study on KDD CUP99 Data Set[J]. Computer Applications and Software, 2014, 11: 321-325. |
吴建胜, 张文鹏, 马垣. KDD CUP99数据集的数据分析研究[J]. 计算机应用与软件, 2014, 11: 321-325. | |
[30] | GOODFELLOW L J, SCHLENS J, SZEGEDY C, et al. Explaining and Harnessing Adversarial Examples[EB/OL]. (2015-03-20)[2023-12-05]. https://doi.org/10.48550/arXiv.1412.6572. |
[31] | CHEN Pinyu, ZHANG Huan, SHARMA Y, et al. Zoo: Zeroth Order Optimization Based Black-Box Attacks to Deep Neural Networks without Training Substitute Models[EB/OL]. (2017-08-14)[2023-12-05]. https://doi.org/10.1145/3128572.3140448. |
[32] |
BAI Zhixu, WANG Hengjun. Adversarial Example Generation Method Based on Improved Genetic Algorithm[J]. Computer Engineering, 2023, 49(5): 139-149.
doi: 10.19678/j.issn.1000-3428.0065260 |
白祉旭, 王衡军. 基于改进遗传算法的对抗样本生成方法[J]. 计算机工程, 2023, 49(5): 139-149.
doi: 10.19678/j.issn.1000-3428.0065260 |
|
[33] |
PAWLICKI M, CHORAS M, KOZIK R. Defending Network Intrusion Detection Systems against Adversarial Evasion Attacks[J]. Future Generation Computer Systems, 2020, 110: 148-154.
doi: 10.1016/j.future.2020.04.013 URL |
[34] | HUANG Shuiyuan, AN Wanjia, ZHANG Deshun, et al. Image Classification and Adversarial Robustness Analysis Based on Hybrid Quantum-Classical Convolutional Neural Network[EB/OL]. (2023-04-15)[2023-12-05]. https://doi.org/10.1016/j.optcom.2023.129287. |
[35] | SIM S, JOHNSON P D, ASPURU-GUZIK A. Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms[EB/OL]. (2019-10-14)[2023-12-05]. https://doi.org/10.1002/qute.201900070. |
[36] |
MOUSTAFA N, SLAY J. The Evaluation of Network Anomaly Detection Systems: Statistical Analysis of the UNSW-NB15 Data Set and the Comparison with the KDD99 Data Set[J]. Information Security Journal: A Global Perspective, 2016, 25(1): 18-31.
doi: 10.1080/19393555.2015.1125974 URL |
[1] | ZHONG Jing, FANG Bing, ZHU Jiang. Recent Research of Feature Selection Algorithms Based on Sparse Matrix Structure [J]. Netinfo Security, 2024, 24(3): 352-362. |
[2] | LIU Feng, JIANG Jiaqi, HUANG Hao. Security Overview of Cryptocurrency Trading Media and Processes [J]. Netinfo Security, 2024, 24(3): 330-351. |
[3] | XU Liangchen, MENG Zhaoyi, HUANG Wenchao, XIONG Yan. Array Processing Loop Compression Method for Program Reachability Verification [J]. Netinfo Security, 2024, 24(3): 374-384. |
[4] | YANG Jiechao, HU Hanping, SHUAI Yan, DENG Yuxin. Lightweight Stream Cipher Based on Time-Varying Mutual Coupling Double Chaotic System [J]. Netinfo Security, 2024, 24(3): 385-397. |
[5] | YANG Zhipeng, LIU Daidong, YUAN Junyi, WEI Songjie. Research on Network Local Security Situation Fusion Method Based on Self-Attention Mechanism [J]. Netinfo Security, 2024, 24(3): 398-410. |
[6] | JIANG Rong, LIU Haitian, LIU Cong. Unsupervised Network Intrusion Detection Method Based on Ensemble Learning [J]. Netinfo Security, 2024, 24(3): 411-426. |
[7] | JIANG Kui, LU Lufan, SU Yaoyang, NIE Wei. SHDoS Attack Detection Research Based on Attention-GRU [J]. Netinfo Security, 2024, 24(3): 427-437. |
[8] | ZHANG Xinyou, SUN Feng, FENG Li, XING Huanlai. Multi-View Representations for Fake News Detection [J]. Netinfo Security, 2024, 24(3): 438-448. |
[9] | FU Yanming, LU Shenglin, CHEN Jiayuan, QIN Hua. Dynamic Task Allocation for Crowd Sensing Based on Deep Reinforcement Learning and Privacy Protection [J]. Netinfo Security, 2024, 24(3): 449-461. |
[10] | ZHANG Qiang, HE Junjiang, LI Wenshan, LI Tao. Anomaly Traffic Detection Based on Deep Metric Learning [J]. Netinfo Security, 2024, 24(3): 462-472. |
[11] | XUE Mingzhu, HU Liang, WANG Ming, WANG Feng. TAP Rule Processing System Based on Federated Learning and Blockchain Technology [J]. Netinfo Security, 2024, 24(3): 473-485. |
[12] | FENG Guangsheng, JIANG Shunpeng, HU Xianlang, MA Mingyu. New Research Progress on Intrusion Detection Techniques for the Internet of Things [J]. Netinfo Security, 2024, 24(2): 167-178. |
[13] | ZHAI Peng, HE Jingsha, ZHANG Yu. An Identity Authentication Method Based on SM9 and Blockchain in the IoT Environment [J]. Netinfo Security, 2024, 24(2): 179-187. |
[14] | GU Yanyan, SHEN Limin, GAO Chenxu, ZHU Ting. Efficient and Secure Certificateless Aggregate Signature Scheme in Vehicle Networks [J]. Netinfo Security, 2024, 24(2): 188-202. |
[15] | ZHAO Geng, MA Yingjie, DONG Youheng. New Progress in Research and Application of Chaotic Cryptography Theory [J]. Netinfo Security, 2024, 24(2): 203-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||