Netinfo Security ›› 2023, Vol. 23 ›› Issue (6): 22-33.doi: 10.3969/j.issn.1671-1122.2023.06.003
Previous Articles Next Articles
XIE Ying1,2, ZENG Zhu2, HU Wei3(), DING Xuyang1
Received:
2022-12-30
Online:
2023-06-10
Published:
2023-06-20
CLC Number:
XIE Ying, ZENG Zhu, HU Wei, DING Xuyang. A False Data Injection Attack Detecting and Compensating Method[J]. Netinfo Security, 2023, 23(6): 22-33.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2023.06.003
[1] |
DING Derui, HAN Qinglong, XIANG Yang, et al. A Survey on Security Control and Attack Detection for Industrial Cyber-Physical Systems[J]. Neurocomputing, 2018, 275: 1674-1683.
doi: 10.1016/j.neucom.2017.10.009 URL |
[2] |
MUSLEH A S, GUO Chen, ZHAO Yangdong, et al. Attack Detection in Automatic Generation Control Systems Using LSTM-Based Stacked Autoencoders[J]. IEEE Transactions on Industrial Informatics, 2022, 19(1): 153-165.
doi: 10.1109/TII.2022.3178418 URL |
[3] | KRAVCHIK M, SHABTAI A. Detecting Cyber Attacks in Industrial Control Systems Using Convolutional Neural Networks[C]// ACM. The 2018 Workshop on Cyber-Physical Systems Security and Privacy. New York: ACM, 2018: 72-83. |
[4] | YAN Jun, TANG Bo, HE Haibo. Detection of False Data Attacks in Smart Grid with Supervised Learning[C]// IEEE. 2016 International Joint Conference on Neural Networks(IJCNN). New York:IEEE, 2016: 1395-1402. |
[5] |
ASHRAFUZZAMAN M, DAS S, CHAKHCHOUKH Y, et al. Detecting Stealthy False Data Injection Attacks in the Smart Grid Using Ensemble-Based Machine Learning[EB/OL]. (2020-7-29)[2022-12-17]. https://doi.org/10.1016/j.cose.2020.101994.
doi: https://doi.org/10.1016/j.cose.2020.101994 |
[6] | WAGHMARE S, KAZI F, SINGH N. Data Driven Approach to Attack Detection in a Cyber-Physical Smart Grid System[C]// IEEE. 2017 Indian Control Conference(ICC). New York:IEEE, 2017: 271-276. |
[7] |
WANG Yufeng, ZHANG Zhihao, MA Jianhua, et al. KFRNN: An Effective False Data Injection Attack Detection in Smart Grid Based on Kalman Filter and Recurrent Neural Network[J]. IEEE Internet of Things Journal, 2021, 9(9): 6893-6904.
doi: 10.1109/JIOT.2021.3113900 URL |
[8] |
WANG Jiexin, LAI Yingxu, LIU Jing. Stealthy Attack Detection Method Based on Multi-Feature Long Short-Term Memory Prediction Model[J]. Future Generation Computer Systems, 2022, 137: 248-259.
doi: 10.1016/j.future.2022.07.014 URL |
[9] |
MANANDHAR K, CAO Xiaojun, HU Fei, et al. Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter[J]. IEEE Transactions on Control of Network Systems, 2014, 1(4): 370-379.
doi: 10.1109/TCNS.2014.2357531 URL |
[10] |
AMELI A, HOOSHYAR A, YAZDAVAR A H, et al. Attack Detection for Load Frequency Control Systems Using Stochastic Unknown Input Estimators[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(10): 2575-2590.
doi: 10.1109/TIFS.2018.2824253 URL |
[11] | KHALAF M, YOUSSEF A, EL-SAADANY E. A Particle Filter-Based Approach for the Detection of False Data Injection Attacks on Automatic Generation Control Systems[C]// IEEE. 2018 IEEE Electrical Power and Energy Conference(EPEC). New York:IEEE, 2018: 1-6. |
[12] |
AMELI A, HOOSHYAR A, EL-SAADANY E F, et al. Attack Detection and Identification for Automatic Generation Control Systems[J]. IEEE Transactions on Power Systems, 2018, 33(5): 4760-4774.
doi: 10.1109/TPWRS.59 URL |
[13] |
YANG Qingyu, YANG Jie, YU Wei, et al. On False Data-Injection Attacks Against Power System State Estimation: Modeling and Countermeasures[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 25(3): 717-729.
doi: 10.1109/TPDS.2013.92 URL |
[14] |
SHI Hanzhang, XIE Linbo, WU Zhihai, et al. Detection of False Data Injection Attacks in Power Grid Based on Coding Schemes[J]. Information and Control, 2021, 50(4): 419-426.
doi: 10.13976/j.cnki.xk.2021.0398 |
史晗璋, 谢林柏, 吴治海, 等. 基于编码策略的电网假数据注入攻击检测[J]. 信息与控制, 2021, 50(4): 419-426.
doi: 10.13976/j.cnki.xk.2021.0398 |
|
[15] |
LI Yuancheng, HUANG Rong, MA Longqiang. False Data Injection Attack and Defense Method on Load Frequency Control[J]. IEEE Internet of Things Journal, 2020, 8(4): 2910-2919.
doi: 10.1109/JIoT.6488907 URL |
[16] |
ABBASPOUR A, SARGOLZAEI A, FOROUZANNEZHAD P, et al. Resilient Control Design for Load Frequency Control System Under False Data Injection Attacks[J]. IEEE Transactions on Industrial Electronics, 2019, 67(9): 7951-7962.
doi: 10.1109/TIE.41 URL |
[17] | BI Wenjun, ZHANG Kaifeng, YUAN Kun, et al. Observer-Based Attack Detection and Mitigation for Load Frequency Control System[C]// IEEE. 2019 IEEE Power & Energy Society General Meeting(PESGM). New York:IEEE, 2019: 1-5. |
[18] |
GU Yapei, YU Xiang, GUO Kexin, et al. Detection, Estimation, and Compensation of False Data Injection Attack for UAVs[J]. Information Sciences, 2021, 546: 723-741.
doi: 10.1016/j.ins.2020.08.055 URL |
[19] |
HAN Jinglin, ZHAO Hui, HU Ping, et al. False Data Detection Strategy for Unified Control of Hybrid Microgrid[EB/OL]. (2022-12-14)[2022-12-17]. https://doi.org/10.19635/j.cnki.csu-epsa.001165.
doi: https://doi.org/10.19635/j.cnki.csu-epsa.001165 |
韩璟琳, 赵辉, 胡平, 等. 交直流微电网互联统一控制虚假数据检测策略[EB/OL]. (2022-12-14)[2022-12-17]. https://doi.org/10.19635/j.cnki.csu-epsa.001165.
doi: https://doi.org/10.19635/j.cnki.csu-epsa.001165 |
|
[20] |
MOUSAVIAN S, VALENZUELA J, WANG Jianhui. Real-Time Data Reassurance in Electrical Power Systems Based on Artificial Neural Networks[J]. Electric Power Systems Research, 2013, 96: 285-295.
doi: 10.1016/j.epsr.2012.11.015 URL |
[21] | YANG Fan, CHEN Houjin, LI Jupeng, et al. Single Shot Multibox Detector with Kalman Filter for Online Pedestrian Detection in Video[J]. IEEE Access, 2019: 15478-15488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||