[1] |
LOVATO A V, FONTES C H, EMBIRUCU M, et al. A Fuzzy Modeling Approach to Optimize Control and Decision Making in Conflict Management in Air Traffic Control[EB/OL]. https://www.sciencedirect.com/science/article/abs/pii/S0360835217305302, 2018-01-08.
|
[2] |
LYU Tao, SONG Wenbin, DU Ke. Human Factors Analysis of Air Traffic Safety Based on HFACS-BN Model[EB/OL]. https://doi.org/10.3390/app9235049, 2019-11-22.
|
[3] |
VISHNYAKOVA L V, OBUKHOV Y V. A Solution to the Problem of Assessing Aviation Safety by Simulation Modeling[J]. Journal of Computer and Systems Sciences International, 2018, 57(6):957-969.
doi: 10.1134/S1064230718060126
URL
|
[4] |
SAMPIGETHAYA K, POOVENDRAN R. Cyber-physical System Framework for Future Aircraft and Air Traffic Control [C]//IEEE. 2012 IEEE Aerospace Conference, March 3-10, 2012, Big Sky, MT, USA. New York: IEEE, 2012: 1-9.
|
[5] |
BATUWANGALA E, RAMASAMY S, BOGODA L, et al. Safety and Security Considerations in the Certification of Next Generation Avionics and Air Traffic Management Systems[EB/OL]. https://search.informit.org/doi/10.3316/INFORMIT.739354743285311, 2017-02-26. , 2017-02-26.
|
[6] |
LYKOU G, IAKOVAKIS G, GRITZALIS D. Aviation Cybersecurity and Cyber-resilience: Assessing Risk in Air Traffic Management[M]. New York: Springer, 2019.
|
[7] |
AHTO B, OLGA G, ALEKSANDR L, et al. Attribute Evaluation on Attack Trees with Incomplete Information[EB/OL]. https://www.sciencedirect.com/science/article/pii/S0167404819301774, 2020-01-18.
|
[8] |
LALLIE H S, DEBATTISTA K, BAL J. A Review of Attack Graph and Attack Tree Visual Syntax in Cyber Security[J]. Computer Science Review, 2020, 35(2):6-19.
|
[9] |
ENOCH S Y, LEE J S, KIM D S. Novel Security Models, Metrics and Security Assessment for Maritime Vessel Networks[J]. Computer Networks, 2021, 189(4):16-34.
|
[10] |
BELLOVIN S M. Attack Surfaces[J]. IEEE Security & Privacy, 2016, 14(3):88-97.
|
[11] |
HOWARD M, PINCUS J, WING J M. Measuring Relative Attack Surfaces[M]. Heidelberg: Springer, 2005.
|
[12] |
MANADHATA P K, WING J M. An Attack Surface Metric[J]. IEEE Transactions on Software Engineering, 2011, 37(3):371-386.
doi: 10.1109/TSE.2010.60
URL
|
[13] |
YOUNIS A A, MALAIYA Y K. Relationship between Attack Surface and Vulnerability Density: A Case Study on Apache HTTP Server[EB/OL]. https://www.researchgate.net/publication/304675945_Relationship_between_attack_surface_and_vulnerability_density_A_case_study_on_apachehttp_server, 2012-07-15.
|
[14] |
YOUNIS A A, MALAIYA Y K, RAY I. Using Attack Surface Entry Points and Reachability Analysis to Assess the Risk of Software Vulnerability Exploitability[C]//IEEE. 15th International Symposium on High-assurance Systems Engineering, January 9-11, 2014, Miami Beach, FL, USA. New York: IEEE, 2014: 1-8.
|
[15] |
XIONG Xinli, ZHAO Guangsheng, XU Weiguang, et al. System Attack Surface Based MTD Effectiveness Assessment Model[J]. Journal of Tsinghua University: Science & Technology, 2019, 59(4):276-283.
|
|
熊鑫立, 赵光胜, 徐伟光, 等. 基于系统攻击面的动态目标防御有效性评估方法[J]. 清华大学学报:自然科学版, 2019, 59(4):276-283.
|
[16] |
THEISEN C, HERZIG K, MURPHY B, et al. Risk-based Attack Surface Approximation: How Much Data is Enough? [C]//IEEE. 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP), May 20-28, 2017, Buenos Aires, Argentina. New York: IEEE, 2017: 273-282.
|
[17] |
Information Work Office of the State Council. GB/T 28448-2019 Information Security Technology Network Security Level Protection Evaluation Requirements[S]. Beijing: Standards Press of China, 2019.
|
|
国务院信息化工作办公室. GB/T28448-2019 信息安全技术网络安全等级保护测评要求[S]. 北京: 中国标准出版社, 2019.
|
[18] |
ZHANG Mengyuan, WANG Lingyu, JAJODIA S. Network Attack Surface: Lifting the Concept of Attack Surface to the Network Level for Evaluating Networks’ Resilience Against Zero-day Attacks[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(1):310-324.
doi: 10.1109/TDSC.8858
URL
|
[19] |
RAMOS A, LAZAR M, HOLANDA F R, et al. Model-based Quantitative Network Security Metrics: A Survey[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4):2704-2734.
|
[20] |
KHOSRAVI-FARMAD M, GHAEMI-BAFGHI A. Bayesian Decision Network-based Security Risk Management Framework[J]. Journal of Network and Systems Management, 2020, 28(4):1794-1819.
doi: 10.1007/s10922-020-09558-5
URL
|
[21] |
MUÑOZ-GONZÁLEZ L, SGANDURRA D, BARRÈRE M, et al. Exact Inference Techniques for the Analysis of Bayesian Attack Graphs[J]. IEEE Transactions on Dependable and Secure Computing, 2017, 16(2):231-244.
doi: 10.1109/TDSC.8858
URL
|
[22] |
CHATZIPOULIDIS A, MICHALOPOULOS D, MAVRIDIS I. Information Infrastructure Risk Prediction through Platform Vulnerability Analysis[J]. Journal of Systems and Software, 2015, 106(7):28-41.
doi: 10.1016/j.jss.2015.04.062
URL
|
[23] |
THEISEN C, MUNAIAH N, AL-ZYOUD M, et al. Attack Surface Definitions: A Systematic Literature Review[J]. Information and Software Technology, 2018, 104(12):94-103.
doi: 10.1016/j.infsof.2018.07.008
URL
|
[24] |
MA Chunguang, WANG Chenghong, ZHANG Donghong, et al. A Dynamic Network Risk Assessment Model Based on Attacker’s Inclination[J]. Journal of Computer Research and Development, 2015, 52(9):2056-2068.
|
|
马春光, 汪诚弘, 张东红, 等. 一种基于攻击意愿分析的网络风险动态评估模型[J]. 计算机研究与发展, 2015, 52(9):2056-2068.
|
[25] |
YAMAGUCHI F, LINDNER F, RIECK K. Vulnerability Extrapolation: Assisted Discovery of Vulnerabilities Using Machine Learning [C]//USENIX. Proceedings of the 5th USENIX Conference on Offensive Technologies, August 8-12, 2011, California West, USA. Berkeley: USENIX, 2011: 13-23.
|
[26] |
KHAN M A, MAHMOOD S. A Graph Based Requirements Clustering Approach for Component Selection[J]. Advances in Engineering Software, 2012, 54(12):1-16.
doi: 10.1016/j.advengsoft.2012.08.002
URL
|
[27] |
ZHANG Su, ZHANG Xinwen, OU Xinming, et al. Assessing Attack Surface with Component-based Package Dependency[EB/OL]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.706.430&rep=rep1&type=pdf, 2015-11-06.
|
[28] |
WU Chensi, XIE Weiqiang, JI Yixiao, et al. Survey on Network System Security Metrics[J]. Journal on Communications, 2019, 40(6):14-31.
|
|
吴晨思, 谢卫强, 姬逸潇, 等. 网络系统安全度量综述[J]. 通信学报, 2019, 40(6):14-31.
|
[29] |
FREDERIC M, Thales Canada. Identifying Key Attack Surface Resources with Dynamic Analysis[R]. Ottawa: I.T. Security R&D Specialist for the Cyber Capability Development Centre(CCDC), 2268C. 001-REP-01-DA-TA1 Rev. 02, 2015.
|