[1] |
GOLDREICH O. Foundations of Cryptography Volume II: Basic Applications[M]. London: Cambridge University Press, 2004.
|
[2] |
DEMMLER D, SCHNEIDER T, ZOHNER M. ABY-A Framework for Efficient Mixed-Protocol Secure Two-Party Computation[C]// ISOC.Network and Distributed System Security Symposium. San Diego: ISOC, 2015: 8-11.
|
[3] |
MA Jie, QI Bin, LYU Kewei. BSA: Enabling Biometric-Based Storage and Authorization on Blockchain[C]// IEEE. IEEE TrustCom 2021. New York: IEEE, 2021: 1077-1084.
|
[4] |
BEAVER D. Efficient Multiparty Protocols Using Circuit Randomization[C]// Springer.Annual International Cryptology Conference. Berlin:Springer, 1991: 420-432.
|
[5] |
LINDELL Y. Secure Multiparty Computation[J]. Communications of the ACM, 2020, 64(1): 86-96.
|
[6] |
HIRT M, MAURER U. Robustness for Free in Unconditional Multi-Party Computation[C]// ACM. Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology. New York: ACM, 2001: 101-118.
|
[7] |
SEO M. Fair and Secure Multi-Party Computation with Cheater Detection[EB/OL]. (2021-08-12) [2022-05-02]. https://doi.org/10.3390/cryptography5030019.
|
[8] |
CANETTI R, Damgaard I, DZIEMBOWSKI S, et al. On Adaptive vs. Non-Adaptive Security of Multiparty Protocols[C]// Springer. International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 2001: 262-279.
|
[9] |
CUNNINGHAM R, FULLER B, YAKOUBOV S. Catching MPC Cheaters: Identification and Openability[C]// Springer. International Conference on Information Theoretic Security. Berlin:Springer, 2017: 110-134.
|
[10] |
AUMANN Y, LINDELL Y. Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries[C]// Springer.Theory of Cryptography Conference. Berlin:Springer, 2010: 281-343.
|
[11] |
HE Yunxiao, XU Haixia, LYU Kewei, et al. Secure Constant Round Protocols for Determining Co-Prime of Polynomials[J]. Journal of Graduate School of Chinese Academy of Sciences, 2004, 21(2): 179-184.
|
|
何云筱, 徐海霞, 吕克伟, 等. 常数轮多项式互素多方安全判定协议[J]. 中科院研究生院学报, 2004, 21(2):179-184.
|
[12] |
HERZBERG A, JARECKI S, KRAWCZYK H, et al. Proactive Secret Sharing or: How to Cope with Perpetual Leakage[C]// Springer. Proceedings of the 15th Annual International Cryptology Conference on Advances in Cryptology. Berlin:Springer, 1995: 339-352
|
[13] |
NIKOV V, NIKOVA S, PRENEEL B, et al. Applying General Access Structure to Proactive Secret Sharing Schemes[C]// Springer. Proceedings of the 23rd Symposium on Information Theory. Berlin:Springer, 2002: 197-206.
|
[14] |
MARAM S, ZHANG F, WANG L, et al. CHURP: Dynamic-Committee Proactive Secret Sharing[C]// ACM. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 2369-2386.
|
[15] |
PAILLIER P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[C]// Springer. International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 1999: 223-238.
|
[16] |
SU Dong, LYU Kewei. Paillier's Trapdoor Function Hides Θ(n) bits[J]. Science China Information Sciences, 2011, 54(9): 1827-1836.
doi: 10.1007/s11432-011-4269-9
URL
|